催化学报 ›› 2023, Vol. 55: 116-136.DOI: 10.1016/S1872-2067(23)64557-7
杨竣皓a, 安露露a, 王双a, 张辰浩a, 罗官宇a, 陈应泉b, 杨会颖c, 王得丽a,b,*()
收稿日期:
2023-09-28
接受日期:
2023-11-01
出版日期:
2023-12-18
发布日期:
2023-12-07
通讯作者:
*电子信箱: 基金资助:
Junhao Yanga, Lulu Ana, Shuang Wanga, Chenhao Zhanga, Guanyu Luoa, Yingquan Chenb, Huiying Yangc, Deli Wanga,b,*()
Received:
2023-09-28
Accepted:
2023-11-01
Online:
2023-12-18
Published:
2023-12-07
Contact:
*E-mail: About author:
Deli Wang (School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology) received her PhD degree at Wuhan University (under the supervision of Prof. Lin Zhuang) in 2008. From 2008 to 2012, she worked as a postdoctoral associate at the Fuel Cell Research Center of Nanyang Technological University and then in Prof. Héctor D. Abruña’s group at Cornell University. At the beginning of 2013, she joined the Huazhong University of Science and Technology as a professor in the School of Chemistry and Chemical Engineering. Her research interests mainly focused on developing high-performance nanomaterials for energy conversion and storage.
Supported by:
摘要:
氢气是一种备受关注的潜力巨大的清洁可再生能源. 然而, 自然界中的氢主要以化合物形式存在, 传统的制氢方法存在耗能高和污染严重等缺点. 相比之下, 电解水制氢具有原料来源丰富、环境友好和可持续等优点, 发展潜力巨大. 层状双氢氧化物具有独特的分层结构和电子分布、组分灵活可调以及比表面积高等优点, 在电催化水裂解领域具有广泛的应用. 然而, 层状双氢氧化物存在电导率低和活性位点有限等问题, 限制了其实际应用. 因此, 亟需针对以上问题对其进行优化.
缺陷工程是一种通过调控材料内部缺陷结构以改善材料电催化性能的有效策略. 该策略不仅可以优化层状双氢氧化物表面的微观结构, 还可以通过引入空位创造额外的活性位点, 达到改善层状双氢氧化物电解水催化性能的目的. 本文主要从层状双氢氧化物的结构特性出发, 分析了层状双氢氧化物作为电解水催化剂所面临的挑战, 即层状双氢氧化物在催化电解水过程中由于活性位点坍塌和相分离所导致的催化活性衰减的问题, 以及电导率低和活性位点有限所导致的析氢反应催化性能不理想等问题. 并针对性地对层状双氢氧化物的缺陷制造策略进行整理与总结, 系统讨论了各个缺陷制造策略的优点和缺点以及各自特点, 包括不涉及任何液体溶剂的等离子刻蚀法以及可以定向制造特定价态的阳离子缺陷的碱刻蚀法等. 对于同一类的缺陷制造策略, 本文也探讨了该种策略近年来的发展, 如配位-萃取法从最初的使用简单的金属螯合剂与特定金属离子配位并去除配合物以形成阳离子缺陷, 发展到使用同时具有吸电子端和富电子端的有机络合剂, 以在层状双氢氧化物上有选择性地同时制造出阴离子缺陷和阳离子缺陷. 此外, 系统讨论了各种类型的缺陷对层状双氢氧化物电化学行为的影响. 通过聚焦不同缺陷类型对层状双氢氧化物催化活性、稳定性、电子结构与形貌组成的优化方式和机理, 旨在加深对缺陷介导的层状双氢氧化物的催化机理的理解, 在此基础上, 阐述了缺陷工程在改善层状双氢氧化物电催化性能方面的优越性. 虽然近年来研究者们在层状双氢氧化物的缺陷工程设计和机理研究方面取得了较多成果, 但仍存在很多需要进一步研究的问题与挑战. 最后本文详细讨论了所面临的问题与挑战, 提出了可能的解决思路, 并对缺陷工程调控的层状双氢氧化物在电解水领域的发展前景进行了展望.
杨竣皓, 安露露, 王双, 张辰浩, 罗官宇, 陈应泉, 杨会颖, 王得丽. 层状双氢氧化物基电解水催化剂的缺陷工程调控策略[J]. 催化学报, 2023, 55: 116-136.
Junhao Yang, Lulu An, Shuang Wang, Chenhao Zhang, Guanyu Luo, Yingquan Chen, Huiying Yang, Deli Wang. Defects engineering of layered double hydroxide-based electrocatalyst for water splitting[J]. Chinese Journal of Catalysis, 2023, 55: 116-136.
Fig. 1. (a) HER and OER of electrocatalytic water splitting. (b) Volmer-Tafel reaction route (left) and Volmer-Heyrovsky reaction route (right) for HER (inner circle is for alkaline condition and the outer circle is for acidic condition). Reproduced with permission [9]. Copyright 2020, American Chemical Society. (c) Volcano plot of the exchange current density as a function of the DFT-calculated Gibbs free energy of adsorbed atomic hydrogen. Reproduced with permission [26]. Copyright 2007, The American Association for the Advancement of Science. AEM reaction route (d) and LOM pathway (e) for OER (inner circle is for alkaline condition and the outer circle is for acidic condition). Reproduced with permission [27?-29]. Copyright 2021, Wiley-VCH GmbH. Copyright 2020, The Royal Society of Chemistry. Copyright 2019, American Chemical Society. (f) Volcano plot of overpotential for OER as a function of oxygenated reaction intermediates. Reproduced with permission [30]. Copyright 2011, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 2. (a) Structure model of the host layer of LDH (The red ball represents oxygen, the green ball represents divalent metal ions, and the blue ball represents trivalent metal ions). (b) The mechanism of metal dissolution in NiFe LDH during CV (left) and CA (right) process. Summary of the activity loss and metal dissolution by CV processes (c) and CA processes (d), respectively. Elemental mapping images for NiFe LDH before (e) and after (f) stability test. (b-f) Reproduced with permission [60]. Copyright 2021, Wiley-VCH GmbH.
Fig. 3. The common types of defects in LDH. The process of anion vacancies formation (a) and cation vacancies (b). (a) Reproduced with permission [79]. Copyright 2022, John Wiley & Sons Ltd. (b) Reproduced with permission [25]. Copyright 2023, Yingying Hao et al. (c) Schematic illustration of the formation process of cavities. SEM (d) and TEM (e) images after introduction of cavities. Reproduced with permission [22]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (f) HRTEM for atomic vacancies. Reproduced with permission [70]. Copyright 2019, The Royal Society of Chemistry. (g) HRTEM image after introduction of lattice distortion. Reproduced with permission [23]. Copyright 2023, Elsevier B. V.
Fig. 4. Plasma etching method. (a) H2O DBD plasma. Reproduced with permission [67]. Copyright 2017, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) Nitrogen glow discharge plasma etching. Reproduced with permission [86]. Copyright 2021, Elsevier Ltd.
Fig. 5. Alkaline etching method combined with Ru single atoms (a) and electrodeposition method (b) and corresponding schematic diagram of water splitting (c). (a) Reproduced with permission [24]. Copyright 2021, Wiley-VCH GmbH. (b,c) Reproduced with permission [59]. Copyright 2021, Panlong Zhai et al. Alkaline etching method for creating defects (d) and corresponding enhancement mechanisms of the defects creation processes (e). Reproduced with permission [44]. Copyright 2022, American Chemical Society. (f) Laser shock method. Reproduced with permission [93]. Copyright 2022, Wiley-VCH GmbH.
Fig. 6. (a) Complexation-extraction method using methyl-isorhodanate and (b) tributylphosphine. (a) Reproduced with permission [74]. Copyright 2020, Elsevier Ltd. (b) Reproduced with permission [25]. Copyright 2023, Yingying Hao et al. (c) Gas-phase acid etching method. Reproduced with permission [77]. Copyright 2022, American Chemical Society. (d) Non-equilibrium precipitation [85]. Reproduced with permission. Copyright 2021, Wiley-VCH GmbH.
Fig. 7. (a) Charge density distribution for the valence band maximum of NiO-VNi. (b) Schematic view of the Ni and O atoms relaxation around VNi in NiTi mixed metal oxide nanosheets (O atoms move outward, and Ni atoms move inward to VNi.). Reproduced with permission [103]. Copyright 2016, American Chemical Society. (c) ECSA-normalized CV curves. Reproduced with permission [21]. Copyright 2021, Wiley-VCH GmbH. (d) Cation vacancies result in longer Ni-Fe distances and shorter M-O bonds. (e) k3-weighted Fourier-transformed EXAFS R-space patterns (indicating Fe?Fe/Ni is much longer in bond length compared with those in the pristine NiFe-LDH or Fe2O3). Reproduced with permission [60]. Copyright 2021, Wiley-VCH GmbH.
Fig. 8. (a) Scheme of the enhancement mechanisms of the defects creation processes. Reproduced with permission [49]. Copyright 2020, Ning Zhang et al. (b) Schematic electronic configuration of the Ni2+ and Ni3+ cations in NiO6. Reproduced with permission [103]. Copyright 2016, American Chemical Society. (c) Chronoamperometry data for NiFe LDH with different types of defects. DFT calculated dissolution energy of metal atoms in NiFe LDH with M2+ vacancies (d) and M3+ vacancies (e). Reproduced with permission [60]. Copyright 2021, Wiley-VCH GmbH.
Fig. 9. (a) Multiple cation vacancies are created through a non-equilibrium precipitation method. (b) Adsorption configurations of OER steps over NiFe-LDH with no defect, mono-cationic defect, and di-cationic defect, respectively. Reproduced with permission [85]. Copyright 2023, Wiley-VCH GmbH. (c) The evolution of cation defects from VM to VMOH and then to VMOH-H along with increasing applied voltage. (d) Adsorption energies of various intermediates on the pristine and the various defective NiFe LDH models. Reproduced with permission [21]. Copyright 2021, Wiley-VCH GmbH.
Fig. 10. (a) Partial density of state of pristine NiFe LDH and NiFe LDH with Fe and O vacancies. (b) Atomic structure illustration of NiFe LDH with Fe and O vacancies. (c) Electron density distribution of NiFe LDH without vacancies (top) and NiFe LDH with vacancies. Reproduced with permission [58]. Copyright 2021, Elsevier B. V. (d) Atomic structure illustration of NiFe LDH with doped Ce and lattice distortion. (e) Gibbs free energy diagram for the four steps of OER on NiFe LDH with doped Ce and lattice distortion. Reproduced with permission [23]. Copyright 2023, Elsevier B. V. (f) Pt single atoms can be anchored to the Fe vacancies. Reproduced with permission [101]. Copyright 2021, Wiley-VCH GmbH.
Catalyst | Defect type a | Overpotential (mV) (@10 mA cm-2) | Stability b (h) (@mA cm-2) | Ref. |
---|---|---|---|---|
PM-LDH | VM, VO, cavity | 230 | 100 @10 | [ |
Ru1/D-NiFeLDH | VM3+ | 189 | 100 @100 | [ |
NiFe-LDH-NSs/NF-200 | VM3+, VO, cavity | 170 | 40 @10 | [ |
CoFe LDHs-Ar | VM, VO | 266 | N/A | [ |
H2O-Plasma Exfoliated LDHs | VM, VO, cavity | 232 | 11.1 @20 | [ |
cd-NiFe LDH-NaBH4 | VM2+, VO | 205 | 36 @10 | [ |
Pt/NixFe LDHs | VM2+ | 186 | 70 @10‒200 | [ |
MNF-LDH-laser | VM2+, cavity | 220 | 10 @10 | [ |
A-NiFe/NF | VM, cavity | N/A | 75 @100 | [ |
v-L-LDH | VM, VO | 150 | 60 @20 | [ |
NiCo LDH-VNi/CC | VM2+ | 227 | 100 @10 | [ |
CoFe1/3 V-LDH | VM | 241 | 18 @10 | [ |
d-NiFe LDH | VM, cavity | 230 | 36 @10 | [ |
EE-NiFe-LDH array | VM2+, VO | 205 | 24 @100 | [ |
SAV-NiCux-LDH | VM | 290 | 50 @10 | [ |
NiFe-LDH/ATO-air plasma | VO | 312 | N/A | [ |
Pt-Ni2Fe1-24 | VM2+ | 243 | N/A | [ |
d-NiFe-LDH-150 | VM2+ | 243 | 12 @15 | [ |
E-CoFe LDHs | VM2+ | 300 | 10 @10 | [ |
NivacFevac-LDH | VM2+, VM3+ | 230 | 100 @110 | [ |
NiFe LDHs-VNi | VM | 229 | N/A | [ |
d-NiFe-LDH | VM | 170 | 900 @10 | [ |
v-NiFe LDH | VO, cavity | 195 | 26 @10 | [ |
v-Ce/CoFe LDH | VO, cavity | 73 | N/A | [ |
NiFe-LDH-Ti4O7 | VM, VO | 270 | 30 @45 | [ |
Ni0.3Fe0.7 LDH@NF | VM, VO | 184 | 84 @10 | [ |
P-V-NiFe LDH NSA | VM, VO | 19 | 100 @10 | [ |
5% Ce-doped LDH | VO | 340 | 24 @10 | [ |
v-NiFe LDH | VM, VO | 370 | 100 @50 | [ |
Defective NiFe LDH | VO, cavity | 250 | 11.1 @20 | [ |
NiFeCe LDH@CP | lattice distortion | 232 | 70 @20 | [ |
Ru1/D-NiFeLDH (HER)c | VM3+ | 18 | 100 @100 | [ |
Pt/NixFe LDHs (HER) | VM2+ | 5 | N/A | [ |
NiCo LDH-VNi/CC (HER) | VM2+ | 195 | 100 @10 | [ |
CoFe1/3 V-LDH (HER) | VM | 72 | 24 @10 | [ |
v-NiFe LDH (HER) | VM and VO | 87 | N/A | [ |
Table 1 Defect-engineered LDH-based electrocatalysts in alkaline electrolytes for the OER.
Catalyst | Defect type a | Overpotential (mV) (@10 mA cm-2) | Stability b (h) (@mA cm-2) | Ref. |
---|---|---|---|---|
PM-LDH | VM, VO, cavity | 230 | 100 @10 | [ |
Ru1/D-NiFeLDH | VM3+ | 189 | 100 @100 | [ |
NiFe-LDH-NSs/NF-200 | VM3+, VO, cavity | 170 | 40 @10 | [ |
CoFe LDHs-Ar | VM, VO | 266 | N/A | [ |
H2O-Plasma Exfoliated LDHs | VM, VO, cavity | 232 | 11.1 @20 | [ |
cd-NiFe LDH-NaBH4 | VM2+, VO | 205 | 36 @10 | [ |
Pt/NixFe LDHs | VM2+ | 186 | 70 @10‒200 | [ |
MNF-LDH-laser | VM2+, cavity | 220 | 10 @10 | [ |
A-NiFe/NF | VM, cavity | N/A | 75 @100 | [ |
v-L-LDH | VM, VO | 150 | 60 @20 | [ |
NiCo LDH-VNi/CC | VM2+ | 227 | 100 @10 | [ |
CoFe1/3 V-LDH | VM | 241 | 18 @10 | [ |
d-NiFe LDH | VM, cavity | 230 | 36 @10 | [ |
EE-NiFe-LDH array | VM2+, VO | 205 | 24 @100 | [ |
SAV-NiCux-LDH | VM | 290 | 50 @10 | [ |
NiFe-LDH/ATO-air plasma | VO | 312 | N/A | [ |
Pt-Ni2Fe1-24 | VM2+ | 243 | N/A | [ |
d-NiFe-LDH-150 | VM2+ | 243 | 12 @15 | [ |
E-CoFe LDHs | VM2+ | 300 | 10 @10 | [ |
NivacFevac-LDH | VM2+, VM3+ | 230 | 100 @110 | [ |
NiFe LDHs-VNi | VM | 229 | N/A | [ |
d-NiFe-LDH | VM | 170 | 900 @10 | [ |
v-NiFe LDH | VO, cavity | 195 | 26 @10 | [ |
v-Ce/CoFe LDH | VO, cavity | 73 | N/A | [ |
NiFe-LDH-Ti4O7 | VM, VO | 270 | 30 @45 | [ |
Ni0.3Fe0.7 LDH@NF | VM, VO | 184 | 84 @10 | [ |
P-V-NiFe LDH NSA | VM, VO | 19 | 100 @10 | [ |
5% Ce-doped LDH | VO | 340 | 24 @10 | [ |
v-NiFe LDH | VM, VO | 370 | 100 @50 | [ |
Defective NiFe LDH | VO, cavity | 250 | 11.1 @20 | [ |
NiFeCe LDH@CP | lattice distortion | 232 | 70 @20 | [ |
Ru1/D-NiFeLDH (HER)c | VM3+ | 18 | 100 @100 | [ |
Pt/NixFe LDHs (HER) | VM2+ | 5 | N/A | [ |
NiCo LDH-VNi/CC (HER) | VM2+ | 195 | 100 @10 | [ |
CoFe1/3 V-LDH (HER) | VM | 72 | 24 @10 | [ |
v-NiFe LDH (HER) | VM and VO | 87 | N/A | [ |
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[6] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[7] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[8] | 韩璟怡, 管景奇. 通过表面镧改性和体相锰掺杂协助钴尖晶石酸性下析氧[J]. 催化学报, 2023, 51(8): 1-4. |
[9] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[10] | 尹春, 杨甫林, 王书莉, 冯立纲. 异质结构NiSe2/MoSe2用于高效尿素辅助电解水制氢[J]. 催化学报, 2023, 51(8): 225-236. |
[11] | 韩策, 梅丙宝, 张庆华, 张慧敏, 姚鹏飞, 宋平, 宫雪, 崔培昕, 姜政, 谷林, 徐维林. 钒掺杂钨青铜内通道氨配位的钌单原子用于高效析氢反应[J]. 催化学报, 2023, 51(8): 80-89. |
[12] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[13] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[14] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[15] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||