催化学报 ›› 2023, Vol. 55: 116-136.DOI: 10.1016/S1872-2067(23)64557-7

• 综述 • 上一篇    下一篇

层状双氢氧化物基电解水催化剂的缺陷工程调控策略

杨竣皓a, 安露露a, 王双a, 张辰浩a, 罗官宇a, 陈应泉b, 杨会颖c, 王得丽a,b,*()   

  1. a华中科技大学化学与化工学院, 能源转换与存储材料化学教育部重点实验室, 材料化学与服役失效湖北省重点实验室, 湖北武汉 430074, 中国
    b华中科技大学煤炭燃烧国家重点实验室, 湖北武汉 430074, 中国
    c新加坡科技设计大学, 新加坡
  • 收稿日期:2023-09-28 接受日期:2023-11-01 出版日期:2023-12-18 发布日期:2023-12-07
  • 通讯作者: *电子信箱: wangdl81125@hust.edu.cn (王得丽).
  • 基金资助:
    国家自然科学基金(22279036)

Defects engineering of layered double hydroxide-based electrocatalyst for water splitting

Junhao Yanga, Lulu Ana, Shuang Wanga, Chenhao Zhanga, Guanyu Luoa, Yingquan Chenb, Huiying Yangc, Deli Wanga,b,*()   

  1. aKey Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
    bState Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
    cPillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
  • Received:2023-09-28 Accepted:2023-11-01 Online:2023-12-18 Published:2023-12-07
  • Contact: *E-mail: wangdl81125@hust.edu.cn (D. Wang).
  • About author:Deli Wang (School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology) received her PhD degree at Wuhan University (under the supervision of Prof. Lin Zhuang) in 2008. From 2008 to 2012, she worked as a postdoctoral associate at the Fuel Cell Research Center of Nanyang Technological University and then in Prof. Héctor D. Abruña’s group at Cornell University. At the beginning of 2013, she joined the Huazhong University of Science and Technology as a professor in the School of Chemistry and Chemical Engineering. Her research interests mainly focused on developing high-performance nanomaterials for energy conversion and storage.
  • Supported by:
    National Natural Science Foundation(22279036)

摘要:

氢气是一种备受关注的潜力巨大的清洁可再生能源. 然而, 自然界中的氢主要以化合物形式存在, 传统的制氢方法存在耗能高和污染严重等缺点. 相比之下, 电解水制氢具有原料来源丰富、环境友好和可持续等优点, 发展潜力巨大. 层状双氢氧化物具有独特的分层结构和电子分布、组分灵活可调以及比表面积高等优点, 在电催化水裂解领域具有广泛的应用. 然而, 层状双氢氧化物存在电导率低和活性位点有限等问题, 限制了其实际应用. 因此, 亟需针对以上问题对其进行优化.

缺陷工程是一种通过调控材料内部缺陷结构以改善材料电催化性能的有效策略. 该策略不仅可以优化层状双氢氧化物表面的微观结构, 还可以通过引入空位创造额外的活性位点, 达到改善层状双氢氧化物电解水催化性能的目的. 本文主要从层状双氢氧化物的结构特性出发, 分析了层状双氢氧化物作为电解水催化剂所面临的挑战, 即层状双氢氧化物在催化电解水过程中由于活性位点坍塌和相分离所导致的催化活性衰减的问题, 以及电导率低和活性位点有限所导致的析氢反应催化性能不理想等问题. 并针对性地对层状双氢氧化物的缺陷制造策略进行整理与总结, 系统讨论了各个缺陷制造策略的优点和缺点以及各自特点, 包括不涉及任何液体溶剂的等离子刻蚀法以及可以定向制造特定价态的阳离子缺陷的碱刻蚀法等. 对于同一类的缺陷制造策略, 本文也探讨了该种策略近年来的发展, 如配位-萃取法从最初的使用简单的金属螯合剂与特定金属离子配位并去除配合物以形成阳离子缺陷, 发展到使用同时具有吸电子端和富电子端的有机络合剂, 以在层状双氢氧化物上有选择性地同时制造出阴离子缺陷和阳离子缺陷. 此外, 系统讨论了各种类型的缺陷对层状双氢氧化物电化学行为的影响. 通过聚焦不同缺陷类型对层状双氢氧化物催化活性、稳定性、电子结构与形貌组成的优化方式和机理, 旨在加深对缺陷介导的层状双氢氧化物的催化机理的理解, 在此基础上, 阐述了缺陷工程在改善层状双氢氧化物电催化性能方面的优越性. 虽然近年来研究者们在层状双氢氧化物的缺陷工程设计和机理研究方面取得了较多成果, 但仍存在很多需要进一步研究的问题与挑战. 最后本文详细讨论了所面临的问题与挑战, 提出了可能的解决思路, 并对缺陷工程调控的层状双氢氧化物在电解水领域的发展前景进行了展望.

关键词: 电解水, 电催化, 层状双氢氧化物, 缺陷工程, 析氧反应, 析氢反应

Abstract:

Layered double hydroxide (LDH)-based materials are considered as promising electrocatalysts for water splitting due to the advantages of unique layered structure, flexible tunability, high specific surface area and distinct electron distribution. However, the low conductivity and limited active sites hinder the industrial applications of LDH-based electrocatalysts. On the other hand, defect engineering is an effective strategy to tune the local surface microstructure and electronic structure, which can efficiently address the drawbacks of LDH. Unfortunately, a comprehensive overview of defect engineering in LDH-based materials is still rarely reported. Herein, this paper reviews the research progress of LDH with various types of defects and its regulation strategies in recent years. Furthermore, the relationship between the catalytic activity, stability, morphology, structure, composition, and defect types of LDH are systematically discussed, aiming to deepen the understanding of the mechanism of defect-mediated LDH. Finally, the main challenges and opportunities for defect design in LDH are emphasized to shed light on the future applications.

Key words: Water splitting, Electrocatalysis, Layered double hydroxide, Defect engineering, Oxygen evolution reaction, Hydrogen evolution reaction