催化学报 ›› 2023, Vol. 55: 137-158.DOI: 10.1016/S1872-2067(23)64551-6

• 综述 • 上一篇    下一篇

二氧化钛基S型异质结光催化剂的研究进展

王伟康a,b, 梅少斌a, 蒋浩朋a, 王乐乐a, 唐华c, 刘芹芹a,*()   

  1. a江苏大学材料科学与工程学院, 江苏镇江 212013
    b安徽师范大学化学与材料学院碳中和工程研究中心, 安徽芜湖 241002
    c青岛大学环境科学与工程学院, 山东青岛 266071
  • 收稿日期:2023-09-18 接受日期:2023-10-22 出版日期:2023-12-18 发布日期:2023-12-07
  • 通讯作者: *电子信箱: qqliu@ujs.edu.cn (刘芹芹).
  • 基金资助:
    国家自然科学基金(21972058);国家自然科学基金(22102064);国家自然科学基金(22302080);江苏省双创博士(JSSCBS20210996)

Recent advances in TiO2-based S-scheme heterojunction photocatalysts

Weikang Wanga,b, Shaobin Meia, Haopeng Jianga, Lele Wanga, Hua Tangc, Qinqin Liua,*()   

  1. aSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    bSchool of Chemistry and Materials Science, Engineering Research Center of Carbon Neutrality, Anhui Normal University, Wuhu 241002, Anhui, China
    cSchool of Environmental Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2023-09-18 Accepted:2023-10-22 Online:2023-12-18 Published:2023-12-07
  • Contact: *E-mail: qqliu@ujs.edu.cn (Q. Liu).
  • About author:Qinqin Liu is a professor in School of Materials Science and Engineering of Jiangsu University. Her current research interests are to develop new photocatalytic materials for energy applications, such as CO2 reduction, water oxidation, O2 reduction and H2 evolution. She won the second prize of the Science and Technology Invention Award of the Ministry of Education. She served as a member of the Youth Council of China Photosensitive Society, a member of the Photocatalysis Professional Committee of China Photosensitive Society, a member of China Chemical Society and a review expert of many international journals.
  • Supported by:
    National Natural Science Foundation of China(21972058);National Natural Science Foundation of China(22102064);National Natural Science Foundation of China(22302080);Jiangsu Provincial Double-Innovation Doctor Program(JSSCBS20210996)

摘要:

近年来, 绿色可持续的太阳能转换策略成为了研究热点. 迄今, 已经有多种光催化剂被研发出来并应用于能源和环境领域. 其中, 二氧化钛(TiO2)基半导体光催化剂因其成本低、生物相容性好、光/热稳定和环境友好等优点, 成为了研究最多的光催化材料之一. 然而, TiO2基光催化剂存在禁带宽度较大, 光生载流子复合严重和表面活性中心不足等问题严重限制了其大规模应用. 因此, 研究人员探索了多种策略, 包括杂原子掺杂、晶面调控、负载金属助催化剂和构建异质结等, 以进一步提升TiO2基光催化剂的性能. 研究表明, 与对单一组分光催化剂进行改性修饰相比, 设计构建异质结复合材料是更有效的提升TiO2基光催化剂性能的策略.

新兴的梯(S)型异质结机制不仅有效促进光生载流子的空间分离和转移, 同时可以使催化剂体系保留较好的氧化还原能力, 有利于提高光催化反应性能. 目前, 有关TiO2基S型异质结光催化剂的研究报道较多, 但有关此类光催化材料的系统性、评论性的综述文章不多. 因此, 有必要对TiO2基S型异质结光催化剂的最新研究成果进行总结. 本文首先从异质结光催化剂的理论发展入手, 探讨了Ⅱ型异质结、传统Z型体系以及新兴的S型异质结光催化剂的发展历程, 相关机理与区别. 然后深入阐述了S型异质结在促进电荷载流子分离以及增强光催化体系的氧化还原能力方面的突出优势. 并且, 重点总结了高效TiO2基S型异质结光催化剂的设计理念, 包括TiO2组分的缺陷/晶面工程、多维纳米结构组合、有机-无机材料杂化和界面化学键合. 详细介绍了以TiO2基S型异质结为典型例子的电荷转移表征技术的实际应用, 包括自由基捕获电子顺磁共振、内建电场评估、原位辐照X射线光电子能谱、开尔文探针力显微镜和飞秒超快吸收光谱. 此外, 简要列举了TiO2基S型异质结光催化剂在分解水产氢、二氧化碳还原、过氧化氢合成和水处理等领域的最新研究进展. 最后, 围绕TiO2基S型异质结催化剂的定向设计和制备、构筑界面电荷转移通道、关注催化活性及材料稳定性、发展原位表征技术以及器件设计等方向的研究提出了展望.

综上, 本文对TiO2基S型异质结光催化剂的研究进展进行了系统性的综述, 希望对更深入理解和设计高效的S型异质结光催化剂提供一定的参考.

关键词: 梯型, 异质结, 二氧化钛, 光催化, 电子传输

Abstract:

The green and sustainable photocatalysis technique turns out to be a promising route to settle the urgent energy and environmental issues. As a representative semiconductor photocatalyst, the titanium dioxide (TiO2) with numerous advantages has attracted worldwide attentions and already applied in various fields. To settle the inherent limitations of single-component photocatalyst, the emerging step (S)-scheme heterojunction system offer a desirable answer, which could extend light-harvesting, accelerate spatial charge separation and simultaneously maintain their strong redox abilities. This review tends to offer a comprehensive introduction of S-scheme heterojunction mechanism and recent advances in TiO2-based S-scheme photocatalysts. The design concepts and advanced characterization techniques for high-efficiency TiO2-based S-scheme catalysts are summarized. Moreover, various energy and environmental fields including hydrogen production, CO2 reduction, H2O2 production and water treatments achieved by TiO2-based S-scheme heterojunctions are reviewed and listed in tables. Lastly, we propose some outlook in aspects of targeted S-scheme heterojunction design and preparation, interfacial charge transfer channels, stability issues, in-situ or operando characterization techniques, and device design, which can contribute to a deeper understand and development of efficient S-scheme photocatalysts.

Key words: S-scheme, Heterojunction, Titanium dioxide, Photocatalysis, Charge transfer