催化学报 ›› 2025, Vol. 77: 210-219.DOI: 10.1016/S1872-2067(25)64771-1

• 论文 • 上一篇    下一篇

磁控溅射制备高熵尖晶石氧化物薄膜并用于高效电催化碱性析氧反应

陈宇辉, 郭从宝, 王毅, 王昆*(), 宋树芹*()   

  1. 中山大学材料科学与工程学院, 化学工程与技术学院, 广东省低碳化学与过程节能重点实验室, PCFM实验室, 广东广州 510275
  • 收稿日期:2025-05-03 接受日期:2025-05-20 出版日期:2025-10-18 发布日期:2025-10-05
  • 通讯作者: *电子信箱: wangk269@mail.sysu.edu.cn (王昆), stsssq@mail.sysu.edu.cn (宋树芹).
  • 基金资助:
    国家自然科学基金(22478450);国家自然科学基金(22478451);国家自然科学基金(22408408);能源催化转化全国重点实验室开放基金项目(2024SKL-A-013);广东省基础与应用基础研究基金(2021A1515010167);广东省基础与应用基础研究基金(2022A1515011196);广州市重点研发计划揭榜挂帅项目(20220602JBGS02);广州市基础与应用基础研究项目(202201011449);广东省燃料电池技术重点实验室开放基金(FC202220);广东省燃料电池技术重点实验室开放基金(FC202216);中山大学百人计划科研基金(76110-12230029)

Constructing high-entropy spinel oxide thin films via magnetron sputtering for efficiently electrocatalyzing alkaline oxygen evolution reaction

Yuhui Chen, Congbao Guo, Yi Wang, Kun Wang*(), Shuqin Song*()   

  1. The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Laboratory, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
  • Received:2025-05-03 Accepted:2025-05-20 Online:2025-10-18 Published:2025-10-05
  • Contact: *E-mail: wangk269@mail.sysu.edu.cn (K. Wang), stsssq@mail.sysu.edu.cn (S. Song).
  • Supported by:
    National Natural Science Foundation of China(22478450);National Natural Science Foundation of China(22478451);National Natural Science Foundation of China(22408408);National State Key Laboratory of Catalysis(2024SKL-A-013);Guangdong Basic and Applied Basic Research Foundation(2021A1515010167);Guangdong Basic and Applied Basic Research Foundation(2022A1515011196);Guangzhou Key R&D Program/Plan Unveiled Flagship Project(20220602JBGS02);Guangzhou Basic and Applied Basic Research Project(202201011449);Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202220);Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202216);100 Talent Research Foundation of Sun Yat-sen University(76110-12230029)

摘要:

析氧反应(OER)是阴离子交换膜电解水制氢(AEMWE)的关键阳极过程, 但其缓慢的四电子转移动力学以及对贵金属催化剂的依赖, 严重限制了绿氢技术的规模化发展. 因此, 开发高效、稳定的非贵金属OER催化剂至关重要. 高熵氧化物(HEO)凭借多元素协同效应、可调的电子结构、高熵效应及晶格畸变等优势, 在OER催化中展现出媲美甚至超越贵金属催化剂的活性. 然而, 目前HEO的制备仍面临均相合成困难的问题, 尤其是传统高温固相法能耗高、反应时间长, 且易导致颗粒烧结和粗化. 因此, 发展小粒径非贵金属HEO的可控制备方法具有重要意义.

基于上述问题, 本研究创新采用单靶材磁控溅射技术, 在泡沫镍基底上原位构筑了均相尖晶石型非贵金属HEO薄膜催化剂, 其由大量平均粒径仅为2.5 nm的(FeCoNiCrMo)3O4超细晶粒组成, 有效解决了传统高温固相法制备HEO过程中存在的颗粒烧结和相分离等难题. 所制备的(FeCoNiCrMo)3O4 HEO薄膜催化剂展现出优异的OER性能: 在1.0 mol L-1 KOH中, 10 mA cm-2电流密度下OER过电位为216 mV, Tafel斜率仅为41.16 mV dec-1, 且在100 mA cm-2电流密度下稳定运行200 h的活性衰减率仅为272 µV h-1, 各项OER性能指标均显著优于商业IrO2催化剂(290 mV, 74.92 mV dec-1, 1090 µV h-1). 机理研究发现, pH依赖性实验证明了(FeCoNiCrMo)3O4 HEO薄膜催化剂遵循质子耦合电子转移机制; 四甲基铵阳离子探针实验表明, 该HEO薄膜催化剂的OER过程遵循吸附质演化机制; 通过拟合催化剂在不同温度下的线性扫描伏安曲线绘制出的Arrhenius图, 证实HEO薄膜催化剂较IrO2具有更低的活化能, 表明其OER动力学更快. 甲醇分子探针实验表明, Mo元素的引入有效降低了催化剂表面含氧中间体*OH的吸附强度, 进而促进后续脱质子化过程, 提高了OER速率. 密度泛函理论计算表明, (FeCoNiCrMo)3O4与(FeCoNiCr)3O4两种材料的决速步骤均在*O的形成阶段, 其中(FeCoNiCr)3O4的RDS能垒为2.10 eV, 明显高于(FeCoNiCrMo)3O4 (1.83 eV), 这从理论上解释了Mo的引入对催化剂OER活性的提升机制, 与电化学性能的测试结果以及表观活化能的分析结论相一致.

综上所述, 本文不仅建立了超细HEO薄膜催化剂的可控制备新方法, 更通过电化学实验与理论计算的有机结合, 为设计高效非贵金属析氧反应催化剂提供了新策略, 对推动电解水制氢技术的实际应用具有重要价值.

关键词: 高熵尖晶石氧化物, 磁控溅射, 碱性电解水, 析氧反应

Abstract:

Ensuring high electrocatalytic performance simultaneously with low or even no precious-metal usage is still a big challenge for the development of electrocatalysts toward oxygen evolution reaction (OER) in anion exchange membrane water electrolysis. Here, homogeneous high entropy oxide (HEO) film is in-situ fabricated on nickel foam (NF) substrate via magnetron sputtering technology without annealing process in air, which is composed of many spinel-structured (FeCoNiCrMo)3O4 grains with an average particle size of 2.5 nm. The resulting HEO film (abbreviated as (FeCoNiCrMo)3O4) exhibits a superior OER performance with a low OER overpotential of 216 mV at 10 mA cm-2 and steadily operates at 100 mA cm-2 for 200 h with a decay of only 272 μV h-1, which is far better than that of commercial IrO2 catalyst (290 mV, 1090 μV h-1). Tetramethylammonium cation (TMA+) probe experiment, activation energy analysis and theoretical calculations unveil that the OER on (FeCoNiCrMo)3O4 follows an adsorbate evolution mechanism pathway, where the energy barrier of rate-determining step for OER on (FeCoNiCrMo)3O4 is substantially lowered. Also, methanol molecular probe experiment suggests that a weakened *OH bonding on the (FeCoNiCrMo)3O4 surface and a rapid deprotonation of *OH, further enhancing its OER performance. This work provides a feasible solution for designing efficient high entropy oxides electrocatalysts for OER, accelerating the practical process of water electrolysis for H2 production.

Key words: High entropy spinel oxide, Magnetron sputtering, Alkaline water electrolysis, Oxygen evolution reaction