催化学报 ›› 2026, Vol. 80: 237-247.DOI: 10.1016/S1872-2067(25)64833-9

• 论文 • 上一篇    下一篇

利用聚苯胺作为电子泵提升铋基电催化CO2向甲酸盐转化

熊菊霞a,b,1, 马昊a,b,1, 董盈君a,b,1, 周翔基a,b, 黎琳波a,b, 孙源淼a,b,*(), 张小龙a,b,*(), 成会明a,b,c,*()   

  1. a深圳理工大学材料科学与工程学院, 广东深圳 518107, 中国
    b中国科学院深圳先进技术研究院, 深圳市碳中和能源材料重点实验室, 广东深圳 518055, 中国
    c中国科学院沈阳金属研究所, 沈阳材料科学国家实验室, 辽宁沈阳 110016, 中国
    d米德伯里学院环境科学与化学系, 米德伯里, 美国
  • 收稿日期:2025-03-19 接受日期:2025-08-14 出版日期:2026-01-18 发布日期:2026-01-05
  • 通讯作者: 孙源淼,张小龙,成会明
  • 作者简介:第一联系人:1共同第一作者
  • 基金资助:
    国家自然科学基金(52201237);深圳市科技创新局(KQTD2022110109364705);深圳市科技创新局(ZDSYS2021070614400003);中国博士后科学基金(E325281005);中国博士后科学基金(E325281003);中国博士后科学基金(2023M743670);中国科学院人才引进项目(E344011);招商局集团与SIAT联合研究项目(E2Z1521);SIAT跨院联合研究青年团队项目(E25427);CPSF博士后研究金项目(GZC20232867)

Improving the electrocatalytic CO2 to formate conversion on bismuth using polyaniline as an electron pump

Juxia Xionga,b,1, Hao Maa,b,1, Yingjun Donga,b,1, Benjamin Liud, Xiangji Zhoua,b, Linbo Lia,b, Yuanmiao Suna,b,*(), Xiaolong Zhanga,b,*(), Hui-Ming Chenga,b,c,*()   

  1. aFaculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, Guangdong, China
    bShenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
    cShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
    dDepartment of Environmental Science and Chemistry, Middlebury College, Middlebury, VT 05753, USA
  • Received:2025-03-19 Accepted:2025-08-14 Online:2026-01-18 Published:2026-01-05
  • Contact: Yuanmiao Sun, Xiaolong Zhang, Hui-Ming Cheng
  • About author:First author contact:1These authors contributed equally.
  • Supported by:
    National Natural Science Foundation of China(52201237);Shenzhen Science and Technology Innovation Bureau(KQTD2022110109364705);Shenzhen Science and Technology Innovation Bureau(ZDSYS2021070614400003);China Postdoctoral Science Foundation(E325281005);China Postdoctoral Science Foundation(E325281003);China Postdoctoral Science Foundation(2023M743670);Talent Introduction Project of Chinese Academy of Sciences(E344011);Joint Research Project of China Merchants Group and SIAT(E2Z1521);Cross Institute Joint Research Youth Team Project of SIAT(E25427);Postdoctoral Fellowship Program of CPSF(GZC20232867)

摘要:

利用可再生电力进行电化学二氧化碳还原反应(CO2RR)生产有价值化学品和燃料, 是形成碳循环的重要策略. 开发高效的电催化剂以提高CO2RR的动力学, 使其转化为目标产品并实现最小化能量输入, 是这项技术的关键. 铋基电催化剂通过单电子和质子传递过程优先形成*OCHO中间体, 因此非常有潜力将CO2还原为甲酸(HCOOH)或甲酸盐(HCOO). 然而, 在铋上形成关键的*OCHO中间体的决速步骤, 即耦合的H+/e转移是一个缓慢的吸热过程, 导致过电位高和HCOOH/HCOO高选择性生成的电位窗口狭窄, 而铋的局部化p轨道电子态使得通过电子结构修改调整中间体结合行为非常具有挑战性.

对催化剂表面进行功能化分子修饰是调控过渡金属电子结构的有效策略, 电负性较高的分子可从催化剂中抽取电子, 而电负性较低的分子则可通过p反馈键向催化剂提供电子, 从而实现对金属d带中心的精准调控. 因此本文尝试将此类策略应用于铋的p轨道调控, 以增强其CO2RR性能. 本文选择聚苯胺(PANI)作为铋表面的有机修饰剂, 其具备电子离域化的富氮碳链结构和贯穿聚合物主链的π共轭体系. 通过开发一种原位聚合技术, 以Bi(NO3)3同时作为聚合引发剂和铋源, 制备出PANI-Bi杂化材料, 其具有铋原子与聚苯胺网络紧密结合的结构特征, 形成了大量有机-无机界面. 实验结果表明, PANI-Bi杂化电催化剂的CO2RR性能显著提升, 在高达800 mA cm−2的电流密度下, 甲酸盐生产的单程碳效率超过48.7%. 结合实验与计算结果发现, 聚苯胺通过p反馈键向相邻铋原子捐赠电子, 改变铋活性位点的p轨道电子分布, 促使CO2RR反应转向生成*OCHO中间体的甲酸盐路径, 有效地阻抑CO生成相关中间体的形成, 从而促进甲酸盐的选择性生成. 这种通过聚合物功能化调控金属催化剂电子结构的方法, 揭示了电子特性与反应路径之间的内在关联, 为提升纳米结构材料的催化性能提供了新思路.

综上, 未来研究需聚焦电子结构精准调控, 通过有机-无机界面设计优化中间体吸附能, 拓宽高选择性电位窗口; 同时开发高通量催化剂合成策略, 推动CO2RR在工业级电流密度下的稳定性与能效提升, 实现碳循环技术的规模化应用.

关键词: CO2还原, 电催化, 铋基催化剂, 聚苯胺, 电子调制泵

Abstract:

Bi-based catalysts are known to promote the electrochemical reduction of CO2 to formic acid (HCOOH) or formate (HCOO-). However, their implementation presents challenges: the first H+/e- pair transfer to form the key *OCHO intermediate on a Bi surface is a slow, kinetically sluggish endergonic process, resulting in a large overpotential and narrow potential window for high HCOOH/HCOO- selectivity. Altering the localized p-orbital electron states of Bi to change intermediate binding behaviors is difficult. We addressed this problem by using an in-situ polymerization method to obtain a polyaniline-Bi hybrid (PANI-Bi) with Bi surrounded by PANI chains. Combined experimental and computational studies indicate that the polyaniline acted as an “electron pump” that facilitated charge transfer from the PANI backbone to the Bi surface and changed the p-orbital electrons of the Bi active sites. This lowered the energy barrier for the adsorption of intermediates and facilitated *OCHO formation. Consequently, a significant increase in formate production was observed, achieving a single-pass carbon efficiency exceeding 48.7% at 800 mA cm-2. This organic functionalization strategy, aimed at modifying the electronic structure of heterogeneous catalysts, offers a promising approach for achieving highly selective electroreduction of CO2 at a high current density.

Key words: CO2 reduction, Electrocatalysis, Bi-based catalyst, Polyaniline, Electron pump