催化学报 ›› 2026, Vol. 80: 248-257.DOI: 10.1016/S1872-2067(25)64878-9

• 论文 • 上一篇    下一篇

锌掺杂调控羟基氧化铜的d带结构以提升其CO2电还原性能

白雪a, 唐甜蜜a, 孙婧茹a, 白福全b, 胡静c, 管景奇a,*()   

  1. a吉林大学化学学院, 物理化学研究所, 吉林长春 130021
    b吉林大学化学学院, 理论化学研究所理论与计算化学实验室, 吉林长春 130023
    c内蒙古民族大学化学与材料学院, 内蒙古通辽 028000
  • 收稿日期:2025-07-10 接受日期:2025-09-10 出版日期:2026-01-18 发布日期:2026-01-05
  • 通讯作者: 管景奇
  • 基金资助:
    国家自然科学基金(22075099);吉林省自然科学基金(20220101051JC)

Engineering d-band structure of Zn-doped CuOxHy for boosting CO2 electroreduction performance

Xue Baia, Tianmi Tanga, Jingru Suna, Fuquan Baib, Jing Huc, Jingqi Guana,*()   

  1. aInstitute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130021, Jilin, China
    bLaboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, Jilin, China
    cCollege of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
  • Received:2025-07-10 Accepted:2025-09-10 Online:2026-01-18 Published:2026-01-05
  • Contact: Jingqi Guan
  • Supported by:
    National Natural Science Foundation of China(22075099);Natural Science Foundation of Jilin Province(20220101051JC)

摘要:

电化学CO2还原(CO2RR)是实现碳中和与可再生能源转化的关键技术, 通过将CO2转化为高附加值燃料(如乙醇)或化工原料(如甲酸), 有助于构建可持续碳循环经济体系. 然而, CO2分子高度稳定的线性结构导致其活化需克服巨大能垒, 且其还原过程涉及多电子-质子动态耦合的复杂路径, 产物选择性调控困难. 铜基催化剂是目前唯一能高效催化C-C耦合生成多碳产物的体系, 但其选择性与稳定性不足, 在长期运行中易发生结构重构或活性位点失活. 近年来, 通过引入第二金属调控铜的d带中心成为优化催化剂性能的一种有效策略. 然而, 现有研究集中于铜氧化物体系, 对羟基氧化铜(CuOxHy)中锌掺杂的电子结构调控机制及反应中间体的动态稳定机制尚不明确. 本研究提出通过锌掺杂构建CuZnOxHy双金属协同体系, 旨在揭示锌掺杂诱导的电子重分布与质子传递协同效应, 为解决CO2RR中选择性-稳定性权平衡问题提供新策略.

本文采用模板辅助共沉淀法合成Cu1-aZnaOxHy (a = 0.4-0.8)纳米片. 锌掺杂诱导CuOxHy发生三重结构演变: (1)Zn2+原子级分散于Cu(OH)2晶格形成Cu-O-Zn桥连结构, 通过X射线同步辐射技术精确测定Cu‒O键长优化至1.98 Å; (2)反应中表面Cu2+/Cu+比例从5:1动态演变为1:2.3, 证实Cu位点通过氧化还原循环参与催化; (3)体相结构保持稳定, 保障活性位点持久性. 该结构优化使Cu0.4Zn0.6OxHy在-1.1 V vs. RHE实现73%甲酸法拉第效率, 是未掺杂CuOxHy体系的4.1倍, 塔菲尔斜率降至185 mV dec‒1, 电荷转移阻力降低68%, 并在18 h运行中保持90%活性. 进一步进行了反应机制研究, 原位拉曼光谱捕获到关键中间体HCOO (1070 cm‒1), 与甲酸高选择性直接关联; 密度泛函理论计算揭示锌掺杂上移Cu的d-带中心0.36 eV, 诱导电子重分布增强*HCOO吸附电荷转移量至0.236 |e|(未掺杂0.224 |e|), 将限速步骤(*CO2 → *HCOO)能垒从2.23 eV显著降至1.15 eV; 同时Zn诱导的电子再分布使氢吸附自由能升高0.3 eV, 协同抑制析氢副反应.

综上, 本文证实锌掺杂通过原子级结构调控优化CuOxHyd-带中心, 实现“稳定*HCOO吸附-突破CO2活化能垒-抑制析氢竞争”三重效应, 为双金属羟基氧化物催化剂建立了电子结构主导的反应路径调控新模式, 推动CO2高值化利用发展.

关键词: 电化学二氧化碳还原, 铜锌氢氧化物纳米片, 原位表征, 法拉第效率, 铜/锌比

Abstract:

Heterometallic doping can modulate the electron distribution of a catalyst, thereby influencing its intrinsic activity. In this study, we pioneer zinc doping within copper hydroxy oxides (CuOxHy) to alter the electronic structure and geometry, unlocking a distinct proton-coupled dynamic catalysis mechanism and significantly improving electrochemical CO2 reduction reaction (CO2RR) pathway selectivity toward formate. The Cu0.4Zn0.6OxHy catalyst, synthesized via a template co-precipitation method, exhibits a 4.1-fold enhancement of Faraday efficiency of formate over pristine CuOxHy at ‒1.1 V vs. RHE. In-situ Raman and X-ray photoelectron spectroscopy results confirm that the Cu0.4Zn0.6OxHy catalyst undergoes surface electron reconfiguration while maintaining bulk structural integrity with sustained Cu redox cycling, preserving the key active sites that sustain performance during CO2RR. Density functional theory calculations show that Zn doping effectively modulates the d-band center of Cu, enhances interfacial charge transfer with the *HCOO adsorbate, and lowers the energy barrier of the limiting step (CO2 → *HCOO), thereby boosting CO2RR performance. This work establishes a design principle for modulating the electronic structure of Cu-based hydroxides by zinc doping, highlighting dopant-induced electronic redistribution as a critical factor for achieving high formate selectivity.

Key words: Electrochemical CO2 reduction, CuZnOxHy nanosheets, In-situ characterization, Faradaic efficiency, Cu/Zn ratio\