催化学报 ›› 2013, Vol. 34 ›› Issue (6): 1066-1075.DOI: 10.1016/S1872-2067(12)60567-1

• 研究论文 • 上一篇    下一篇

可重复使用的有序介孔碳-氧化钛吸附-光催化剂用于去除水中苯酚

位威, 于超, 赵卿飞, 钱旭芳, 万颖   

  1. 上海师范大学化学系, 上海市稀土功能材料实验室, 教育部资源化学重点实验室,上海200234
  • 收稿日期:2013-02-06 修回日期:2013-02-25 出版日期:2013-06-07 发布日期:2013-06-09
  • 通讯作者: 万颖
  • 基金资助:

    国家重点基础研究发展计划(973计划, 2013CB934102);长江学者和创新团队发展计划(IRT1269);国家自然科学基金(21073122, 21173149);高等学校博士学科点专项科研基金(20123127110004);上海市科委和教委基础研究计划(11JC1409200, S30406, DZL123);霍英东教育基金(121013).

Ordered mesoporous carbon-based titania as a reusable adsorbent-catalyst for removing phenol from water

WEI Wei, YU Chao, ZHAO Qingfei, QIAN Xufang, WAN Ying   

  1. Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, Shanghai Normal University, Shanghai 200234
  • Received:2013-02-06 Revised:2013-02-25 Online:2013-06-07 Published:2013-06-09
  • Supported by:

    This work was supported by the National Basic Research Program of China (973 Program, 2013CB934102), Program for Changjiang Scholars and Innovative Research Team in University (IRT1269), the National Natural Science Foundation of China (21073122 and 21173149), the Specialized Research Fund for the Doctoral Program of Higher Education (20123127110004), Shanghai Science and Technology Committee (11JC1409200, S30406 and DZL123), and Fok Ying Tung Education Fund (121013).

摘要:

制备了有序介孔碳-氧化钛吸附-光催化剂,利用可见光高效降解水中苯酚.为去除水中高浓度苯酚,设计了吸附-光催化循环,即暗条件吸附8h,分离催化剂和将固体催化剂置于可见光下辐照8h.经过10次循环,水中高浓度苯酚(200mg/L)几乎可被完全降解.详细讨论了TiO2晶格中非金属掺杂、介孔碳壁对TiO2纳米颗粒聚集的阻抑作用、介孔孔道吸附苯酚性能等因素对吸附-光催化剂性能的影响.有序介孔碳-氧化钛复合体有效地结合了物理吸附和光化学降解技术,有望用于降解水中难生物降解的高浓度有机污染物.

关键词: 苯酚, 可见光, 二氧化钛, 碳掺杂, 介孔光催化剂

Abstract:

The high efficiency of ordered mesoporous carbon-based anatase for the visible light-driven photo-degradation of phenol in water is reported. Adsorption-photocatalysis cycles were used to treat polluted water. Contaminated water containing 200 mg/L phenol can be completely mineralized within 10 cycles, in which each cycle consisted of adsorption for 8 h and visible light-driven illumination for 8 h. The roles of non-metal doping in the anatase lattice, aggregation-free confinement of anatase nanoparticles by the carbon pore wall, and adsorption of phenol in the mesopores on the catalytic performance are discussed. The present work provides an effective combination of physical and chemical treatments to remove relatively high concentrations of non-biodegradable organic substances using a mesoporous photocatalyst.

Key words: Phenol, Visible light, Titania, Carbon-doping, Mesoporous photocatalyst