催化学报 ›› 2022, Vol. 43 ›› Issue (9): 2332-2341.DOI: 10.1016/S1872-2067(21)63949-9

• 可再生燃料的光催化和光电催化合成专栏 • 上一篇    下一篇

通过孔道功能化策略将CdS精准修饰到Zr-MOFs表面构筑高效光解水催化剂

胡海均a, 张开来a, 闫格a, 史丽童a, 贾宝华b, 黄洪伟c, 张宇a, 孙晓东a,*(), 马天翼b,#()   

  1. a辽宁大学化学学院, 高等材料绿色合成与制备化学重点实验室, 清洁能源化学研究所, 辽宁沈阳110036, 中国
    b澳大利亚斯威本科技大学埃米材料转化中心, 澳大利亚
    c中国地质大学材料科学与技术学院, 矿物材料国家实验室, 非金属矿物质与固体废弃物材料利用北京市重点实验室, 北京100083, 中国
  • 收稿日期:2021-09-16 接受日期:2021-09-28 出版日期:2022-09-18 发布日期:2022-07-20
  • 通讯作者: 孙晓东,马天翼
  • 基金资助:
    国家自然科学基金(52071171);兴辽人材计划(攀登学者)(XLYC1802005);辽宁百千万人才计划(LNBQW2018B0048);辽宁省优秀青年人才自然科学基金(2019-YQ-04);辽宁省教育厅科研重点项目(LZD201902);辽宁省教育厅(LQN201903);辽宁省教育厅(LQN202008);辽宁大学青年学者基金(LDQN2019007);澳大利亚研究委员会未来研究基金(FT210100298)

Precisely decorating CdS on Zr-MOFs through pore functionalization strategy: A highly efficient photocatalyst for H2 production

Haijun Hua, Kailai Zhanga, Ge Yana, Litong Shia, Baohua Jiab, Hongwei Huangc, Yu Zhanga, Xiaodong Suna,*(), Tianyi Mab,#()   

  1. aInstitute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, China
    bCentre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
    cBeijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
  • Received:2021-09-16 Accepted:2021-09-28 Online:2022-09-18 Published:2022-07-20
  • Contact: Xiaodong Sun, Tianyi Ma
  • Supported by:
    National Natural Science Foundation of China(52071171);Liaoning Revitalization Talents Program-Pan Deng Scholars(XLYC1802005);Liaoning BaiQianWan Talents Program(LNBQW2018B0048);Natural Science Fund of Liaoning Province for Excellent Young Scholars(2019-YQ-04);Key Project of Scientific Research of the Education Department of Liaoning Province(LZD201902);Department of Education of Liaoning Province(LQN201903);Department of Education of Liaoning Province(LQN202008);Foundation for Young Scholars of Liaoning University(LDQN2019007);Australian Research Council (ARC) Future Fellowship(FT210100298)

摘要:

利用光催化技术来获得氢能被认为是解决环境危机和能源短缺的一种有效手段, 近年文献报道了多种制氢催化剂, 其中, CdS因具有较好的可见光吸收性能, 被认为是一种理想的光解水催化剂. 但有限的光催化活性位点及易受光腐蚀限制了它的应用. 与具有超大比表面积的MOFs材料结合, 构筑异质结构可有效改善上述问题, 进而提高光催化活性. 但不同材料之间存在很高的界面能垒, 构筑具有强相互作用的异质结构是十分困难的, 因此, 寻找一种有效的方法来构筑具有强相互作用的异质结构具有重要意义. 目前, 研究人员主要采用三种方法构筑Zr-MOFs@CdS异质结: (1)溶剂热合成法, 该合成方法虽然简单, 但缺少锚定位点, 使得CdS易于团聚; (2)表面活性剂辅助法, 可增强材料间结合力, 但是表面活性剂的引入会降低电荷传输性能; (3)在MOFs配体上修饰锚定位点, 增强与CdS结合位点, 可有效解决上述问题, 但增加了配体官能化的制备成本.

本文采用简单的溶剂热反应将巯基乙酸修饰到Zr-MOFs材料的金属簇上, 其中巯基官能团可作为锚定位点来固定Cd2+离子, 并通过进一步的取代反应将CdS精准修饰到Zr-MOFs表面, 从而构筑具有强相互作用的Zr-MOFs@CdS异质结构. X射线光电子能谱、核磁氢谱以及拉曼光谱测试证明巯基乙酸被精准修饰到Zr-MOFs的金属簇上. 光解水制氢结果表明, 制得的Zr-MOFs@CdS异质结构具有很好的活性, 其产氢效率可达1861.7 μmol·g‒1·h‒1, 是纯CdS的4.5倍, 是利用溶剂热法构筑的Zr-MOFs@CdS的2.3倍. 光电流测试、阻抗测试和荧光光谱测试结果表明, 巯基乙酸的引入可增强Zr-MOFs与CdS的结合力, 进而促进电荷在两种材料之间的传输, 有效降低载流子的复合程度, 最终提升其光解水制氢活性. 通过能带结构分析, 提出了该材料合理的光解水反应机理.

综上, 本文提出了一种孔道功能化策略来构筑Zr-MOFs@CdS异质结构, 引入的巯基乙酸能够作为分子链接剂来增强Zr-MOFs与CdS之间的相互作用, 进而提升了其载流子分离性能和光催化活性. 该方法可为提升MOFs基复合光催化剂的光解水活性提供新的解决途径.

关键词: 锆金属有机框架, 孔道功能化, 光催化产氢, 分子链接剂, 结合位点

Abstract:

Different materials, such as metal sulphides, are often combined with metal-organic frameworks (MOFs) to develop multi-functional composites and improve their photocatalytic properties. However, the high interfacial energy barrier limits the formation and nano-assembly of the heterogeneous junctions between MOFs and metal sulphides. Herein, the heterostructured Zr-MOF-S@CdS are successfully constructed through a sequential synthesis method, in which the mesoporous Zr-MOF are firstly decorated with thioglycolic acid through pore functionalization, and followed by the S2- anion exchange process resulting in the surface close attached growth of CdS onto Zr-MOF-S materials. Due to the presence of molecules linkers, the CdS can be precisely decorated onto Zr-MOF-S without aggregation, which can provide more active sites. Moreover, the intimate connections and the suitable band structures between two materials can also facilitate the photogenerated electron-hole pairs separation. Therefore, the resulting Zr-MOF-S@CdS with appropriate ratio exhibits high photocatalytic activity for water reduction, in which the H2 evolution rate can reach up to 1861.7 μmol·g‒1·h‒1, 4.5 times higher than pure CdS and 2.3 times higher than of Zr-MOF/CdS, respectively. Considering the promising future of MOF-based photocatalysts, this work may provide an avenue for the further design and synthesis MOF-based composite photocatalysts for efficient H2 evolution.

Key words: Zr-MOF, Pore functionalization, Photocatalytic H2 production, Molecular linker, Junction