催化学报 ›› 2025, Vol. 73: 1-7.DOI: 10.1016/S1872-2067(25)64708-5

• 评论 •    下一篇

电合成增值化学品: 从实验室研究到工业应用的挑战

张利利, 周震()   

  1. 郑州大学化工学院, 新能源科学与工程交叉研究中心, 河南郑州 450001
  • 收稿日期:2025-04-05 接受日期:2025-04-20 出版日期:2025-06-18 发布日期:2025-06-12
  • 通讯作者: *电子信箱: zhenzhou@zzu.edu.cn (周震).
  • 基金资助:
    国家自然科学基金(U21A20281)

Electrosynthesis of value-added chemicals: Challenges from laboratory research to industrial application

Li-Li Zhang, Zhen Zhou()   

  1. Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2025-04-05 Accepted:2025-04-20 Online:2025-06-18 Published:2025-06-12
  • Contact: *E-mail: zhenzhou@zzu.edu.cn (Z. Zhou).
  • About author:Zhen Zhou (School of Chemical Engineering, Zhengzhou University) earned his B.S. in Applied Chemistry in 1994 and his Ph.D. in Inorganic Chemistry in 1999, both from Nankai University (P.R. China). He began his academic career at Nankai University as a lecturer in 1999. Two years later, he pursued a JSPS postdoctoral fellowship at Nagoya University (Japan). In 2005, he returned to Nankai University, where he became an associate professor and was later promoted to full professor in 2011. In 2021, he joined Zhengzhou University as a Changjiang Scholar Distinguished Professor and currently serves as the Dean of the School of Chemical Engineering. His research focuses on integrating high-throughput computations, experiments, and machine learning for advancements in energy storage and conversion. He has authored over 300 peer-reviewed papers, garnering 48,000 citations.
  • Supported by:
    National Natural Science Foundation of China(U21A20281)

摘要:

电化学合成增值化学品是能够满足科学、工业与环境等多领域需求的变革性技术路线. 不同于高温高压条件下的能源密集型传统工艺, 电化学系统可以在温和环境条件下, 将H2O, CO2, N2, O2等自然原料转化为燃料、精细化学品、特种材料等高品质产品. 该技术路线不仅能够构建电力到化学品的定向转化路径, 有效降低化学工业的碳足迹; 还可以实现化学储能与电能调峰的协同优化, 为可再生能源消纳提供解决方案, 突破能源传输的地理约束. 因此, 电化学合成技术是连接可再生能源与绿色化工生产的关键桥梁, 兼具能源转换和化学制造双重功能, 是发展“碳中和”循环经济的重要支柱. 在此背景下, 本文聚焦H2O, CO2, N2, O2这些小分子的电催化转化过程, 揭示当前技术瓶颈背后的基础科学问题, 并探讨从实验室创新到规模化工业应用过程中面临的挑战和发展机遇.

本文围绕电催化小分子转化技术在可持续能源转换与存储领域的应用展开, 简要解析了电解制氢、碳氢燃料、氨合成及双氧水制备的技术路径、优势特性及经济性评估. 针对当前技术瓶颈, 总结了实验室阶段的效能提升策略, 涵盖AI驱动的催化剂智能筛选、电化学反应原位动态监测、膜电极界面工程优化、传质强化设计及阳极反应能效调控等关键方向, 并剖析了策略实施中的技术挑战. 进一步围绕电合成技术从实验室到工业化的跨越式发展需求, 强调工业级应用需在装置性能、运行周期、成本控制三大维度实现突破, 同时面临模块化系统集成、热质耦合管理、智能控制体系构建、电源动态配置及规模放大引发的物质分离等新挑战. 这不仅需要推动材料科学、反应工程与数字智能的协同创新, 更需要构思电化学技术与能源基础设施的深度融合模式. 基于此, 提出阶段递进的发展策略, 可以优先聚焦催化剂智能筛选与多尺度动态原位监测技术, 通过界面/膜材料的高通量研发, 提升电化学装置在高电流密度下的耐久性; 进而部署集成多参数传感的智能反应器, 开发响应可再生能源波动的自适应电压调控系统, 并建立人工智能驱动的工艺闭环控制平台; 最终目标实现全自主工业级系统的构建.

总而言之, 电化学合成技术的产业化进程面临从基础科学到工业实施的多维度挑战, 需要协调多学科交叉融合以突破从分子尺度反应机制到工业级系统工程的全链条技术瓶颈, 推动电化学技术向智能化、规模化制造生态系统演进. 综上, 本文为后续相关反应的开发和应用提供了有益参考.

关键词: 电合成, 氢能, 增值化学品, 能源转换, 反应工程

Abstract:

Electrochemical synthesis of value-added chemicals represents a promising approach to address multidisciplinary demands. This technology establishes direct pathways for electricity-to-chemical conversion while significantly reducing the carbon footprint of chemical manufacturing. It simultaneously optimizes chemical energy storage and grid management, offering sustainable solutions for renewable energy utilization and overcoming geographical constraints in energy distribution. As a critical nexus between renewable energy and green chemistry, electrochemical synthesis serves dual roles in energy transformation and chemical production, emerging as a vital component in developing carbon-neutral circular economies. Focusing on key small molecules (H2O, CO2, N2, O2), this comment examines fundamental scientific challenges and practical barriers in electrocatalytic conversion processes, bridging laboratory innovations with industrial-scale implementation.

Key words: Electrosynthesis, Hydrogen energy, Value-added chemicals, Energy conversion, Reaction engineering