催化学报 ›› 2025, Vol. 76: 37-49.DOI: 10.1016/S1872-2067(25)64780-2

• 论文 • 上一篇    下一篇

自漂浮Bi4O5Br2/磷掺杂氮化碳/碳纤维布S型异质结光催化剂增强去除新兴有机污染物

李世杰a,b,*(), 李蕊a, 董珂欣a, 刘艳萍a, 于欣b, 李文尧c, 刘通d, 赵再望e, 张明义f,*(), 张宾a,*(), 陈晓波g   

  1. a浙江海洋大学国家海洋设施养殖工程技术研究中心, 浙江省石油化工环境污染控制重点实验室, 浙江舟山316022, 中国
    b河南大学能源科学与技术学院, 河南省废弃物资源能源化工程技术研究中心, 河南郑州 450046, 中国
    c上海工程技术大学材料科学与工程学院, 上海 201620, 中国
    d武汉工程大学化工与制药学院, 绿色化工过程教育部重点实验室, 湖北省新型反应器与绿色化学工艺重点实验室, 湖北武汉 430205, 中国
    e内蒙古大学能源材料化学研究院, 化学化工学院, 内蒙古呼和浩特 010070, 中国
    f哈尔滨师范大学物理与电子工程学院, 光电带隙材料教育部重点实验室, 黑龙江哈尔滨 150025, 中国
    g能源、物质与系统学部, 科学与工程学院, 密苏里大学堪萨斯城分校, 密苏里州, 美国
  • 收稿日期:2025-04-04 接受日期:2025-07-02 出版日期:2025-09-18 发布日期:2025-09-10
  • 通讯作者: 李世杰,张明义,张宾
  • 基金资助:
    国家自然科学基金(U1809214);国家自然科学基金(U23A20263);国家自然科学基金(51708504);浙江省自然科学基金(LY20E080014);浙江省自然科学基金(LTGN23E080001);舟山市科技计划项目(2022C41011);河南大学化学科学部开放合作项目

Self-floating Bi4O5Br2/P-doped C3N4/carbon fiber cloth with S-scheme heterostructure for boosted photocatalytic removal of emerging organic contaminants

Shijie Lia,b,*(), Rui Lia, Kexin Donga, Yanping Liua, Xin Yub, Wenyao Lic, Tong Liud, Zaiwang Zhaoe, Mingyi Zhangf,*(), Bin Zhanga,*(), Xiaobo Cheng   

  1. aZhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
    bHenan Engineering Research Center of Resource & Energy Recovery from Waste, School of Energy Science and Technology, Henan University, Zhengzhou 450046, Henan, China
    cSchool of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    dKey Laboratory of Green Chemical Process, Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
    eCollege of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, Inner Mongolia, China
    fKey Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, Heilongjiang, China
    gDivision of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO 64110, USA
  • Received:2025-04-04 Accepted:2025-07-02 Online:2025-09-18 Published:2025-09-10
  • Contact: Shijie Li, Mingyi Zhang, Bin Zhang
  • Supported by:
    National Natural Science Foundation of China(U1809214);National Natural Science Foundation of China(U23A20263);National Natural Science Foundation of China(51708504);Natural Science Foundation of Zhejiang Province(LY20E080014);Natural Science Foundation of Zhejiang Province(LTGN23E080001);Science and Technology Project of Zhoushan(2022C41011);and the Open Cooperation Foundation of the Department of Chemical Science of Henan University

摘要:

水体中新兴有机污染物因结构复杂、高毒性与难降解特性, 难以被现有水处理技术有效去除, 致使环境残留持续累积, 对生态系统和人类健康构成重大威胁. 太阳能光催化技术作为可持续废水净化的理想途径, 在实际应用中面临三重挑战: 光生载流子分离效率低、粉末催化剂难回收、重复使用性差. 传统粉末催化剂在水处理中容易流失, 不仅造成二次污染, 更导致运行成本激增. 针对水产养殖业中四环素(TC)类抗生素的污染问题, 开发兼具高效催化性能与易回收特性的新型光催化剂迫在眉睫. 近年研究表明, S型异质结可通过内建电场(IEF)实现载流子的定向迁移, 而宏观载体集成策略可突破粉末催化剂的回收瓶颈.

本研究创新性地构筑了以碳纤维布(CC)为基底的自漂浮S型异质结光催化剂, 通过离子掺杂-高温聚合-溶剂热法在碳纤维表面原位生长Bi4O5Br2/磷掺杂氮化碳(BB/PN)纳米片壳层, 形成BB/PN/CC分级结构. 实验与理论计算证实, BB与PN间的强界面耦合及费米能级差诱导产生强的IEF, 驱动光生载流子遵循S型转移路径, 即光生电子从BB的导带迁移至PN的价带, 与其光生空穴复合, 同时形成了由PN指向BB的界面电场, 使强氧化还原性的电子-空穴复合率大幅降低. 该机制赋予BB/PN/CC卓越的光催化性能, 其对TC的降解动力学常数达0.0118 min‒1, 分别是CN/CC (0.0015 min‒1), BB/CC(0.0066 min‒1)和PN/CC(0.0023 min‒1)的7.9倍, 1.8倍和5.1倍. 此外, 催化剂的自漂浮特性赋予其卓越的易回收特性(8次循环后活性保持率>74%), 有效克服粉末催化剂回收瓶颈. 自由基猝灭实验与电子顺磁共振分析表明, •OH, h+和•O2协同主导抗生素的降解过程. 采用高效液相色谱-质谱联用技术结合ECOSAR毒性预测模型, 系统解析了TC降解中间产物及其毒性演化规律. 本工作通过载体工程、离子掺杂与S型机制的协同优化策略, 为水产抗生素污染控制提供了兼具高效降解与工程实用性的解决方案.

关键词: Bi4O5Br2/P-doped C3N4, 漂浮S型异质结, 内建电场, 光催化, 抗生素去除

Abstract:

The industrial implementation of Solar-driven photocatalysis is hampered by inefficient charge separation, poor reusability and hard retrieval of powdery catalysts. To conquer these drawbacks, a self- floating S-scheme Bi4O5Br2/P-doped C3N4/carbon fiber cloth (BB/PN/CC) composed of carbon fibers (CC) as the core and Bi4O5Br2/P-doped C3N4 (BB/PN) nanosheets as the shell was constructed as a competent, recyclable cloth-shaped photocatalyst for safe and efficient degradation of aquacultural antibiotics. The BB/PN/CC fabric achieves an exceptional tetracycline degradation rate constant of 0.0118 min‒1, surpassing CN/CC (0.0015 min‒1), BB/CC (0.0066 min‒1) and PN/CC (0.0023 min‒1) by 6.9, 0.8 and 4.1 folds, respectively. Beyond its catalytic prowess, the photocatalyst’s practical superiority is evident in its effortless recovery and environmental adaptability. The superior catalytic effectiveness stems from the S-scheme configuration, which retains the maximum redox capacities of the constituent BB and PN while enabling efficient spatial detachment of photo-carriers. X-ray photoelectron spectroscopy (XPS), in-situ XPS, and electron paramagnetic resonance analyses corroborate the S-scheme mechanism, revealing electron accumulation on PN and hole retention on BB under illumination. Density functional theory calculations further confirm S-scheme interfacial charge redistribution and internal electric field formation. This study advances the design of macroscopic S-scheme heterojunction photocatalysts for sustainable water purification.

Key words: Bi4O5Br2/P-doped C3N4, Self-floating S-scheme heterojunction, Internal electric field, Photocatalysis, Antibiotic removal