催化学报 ›› 2025, Vol. 79: 9-31.DOI: 10.1016/S1872-2067(25)64828-5
何林海a,b,1, 楼才溢a,b,1, 孙璐a,b, 牛晶a, 徐舒涛a,b,*(
), 魏迎旭a,b, 刘中民a,b,*(
)
收稿日期:2025-06-27
接受日期:2025-08-10
出版日期:2025-12-18
发布日期:2025-10-27
通讯作者:
徐舒涛,刘中民
作者简介:1共同第一作者.
基金资助:
Linhai Hea,b,1, Caiyi Loua,b,1, Lu Suna,b, Jing Niua, Shutao Xua,b,*(
), Yingxu Weia,b, Zhongmin Liua,b,*(
)
Received:2025-06-27
Accepted:2025-08-10
Online:2025-12-18
Published:2025-10-27
Contact:
Shutao Xu, Zhongmin Liu
About author:Shutao Xu (Dalian Institute of Chemical Physics, Chinese Academy of Science) received his B.S. degree from Fudan University (P. R. China) in 2004, and PhD from Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS) in 2011. Then he joined Prof. Zhongmin Liu’s team at National Engineering Research Center of Lower-Carbon Catalysis Technology, DICP as a research assistant. He became a professor in 2017. His research interests are the developments various of solid-state Nuclear Magnetic Resonance Spectroscopy (ssNMR) methods, including in-situ/operando techniques, 2D ssNMR spectroscopy, Hyperpolarized (HP) 129Xe and Pulse Field Gradient (PFG) NMR, as well as applying these advanced NMR methods to the study of the structure, acidity and reaction mechanism of catalytic materials. He has published more than 100 peer-reviewed papers.Supported by:摘要:
分子筛催化剂, 包括硅铝酸盐类沸石和硅铝磷酸盐类分子筛, 因具有独特的孔道结构、可调控的酸性及优异的水热稳定性, 在多相催化领域展现出广泛应用, 并有望在推动碳中和与可持续发展进程中发挥关键作用. 水分子普遍存在于分子筛材料的合成、储存及催化应用的过程中, 其与分子筛骨架之间复杂的主-客体相互作用及对骨架结构与催化性能的影响, 近年来日益成为学术界关注的前沿科学问题. 然而, 水分子的作用机制十分复杂, 受到温度、水的相态(气态或液态)及其分压等多种因素的显著影响. 目前, 关于水与分子筛骨架之间的主-客体相互作用及水在催化过程中的作用机制仍缺乏系统性认识, 因此对相关研究进展进行全面梳理与总结具有重要意义.
本综述系统梳理了近年来围绕水与分子筛之间的相互作用及其对催化反应路径与性能调控机制影响的研究进展, 综合分析了实验表征与理论计算两方面的最新成果. 重点聚焦水环境中水分子诱导硅铝酸盐与硅铝磷酸盐类分子筛骨架在原子尺度发生的可逆与不可逆结构演变过程, 涵盖了水分子的吸附、T-O-T键的可逆水解和不可逆水解过程, 强调了分子筛骨架在水环境下所表现出的动态特性. 在催化反应层面, 文章从两个角度探讨了水分子在分子筛催化反应性能及动力学行为的双重调控机制: 一方面, 水分子可通过氢键相互作用参与反应过程, 表现为对活性位的竞争吸附、对反应基态与过渡态的稳定作用, 以及构建质子迁移桥梁等多种作用机制; 另一方面, 水分子亦可作为反应物, 直接参与反应中间体或其他客体分子的反应生成新物种. 最后, 总结了当前分子筛催化领域中水的微观作用机制解析所面临的主要挑战, 并对未来的研究方向进行了展望.
综上, 本综述旨在为深入理解含水反应过程中水分子诱导的分子筛骨架结构动态演变、阐明复杂催化反应机理, 以及优化催化反应性能提供理论参考.
何林海, 楼才溢, 孙璐, 牛晶, 徐舒涛, 魏迎旭, 刘中民. 水在分子筛催化中的相互作用: 骨架结构演变与反应调控机制[J]. 催化学报, 2025, 79: 9-31.
Linhai He, Caiyi Lou, Lu Sun, Jing Niu, Shutao Xu, Yingxu Wei, Zhongmin Liu. Water interactions in molecular sieve catalysis: Framework evolution and reaction modulation[J]. Chinese Journal of Catalysis, 2025, 79: 9-31.
Fig. 1. Schematic illustration of water-induced structural changes in molecular sieve frameworks, with interaction strengths varying from weak to strong, encompassing water adsorption and reversible or irreversible hydrolysis of framework T-O-T bonds.
Fig. 2. (a) DFT-optimized structures of Br?nsted acid sites in H-MFI zeolite at varying water/BAS ratios. Reprinted with permission from Ref. [24]. Copyright 2017, American Chemical Society. Exponential decay of the enthalpic contributions (b) and linear decay (c) of the entropic contributions to the generation of the hydrated hydronium ion on BAS in various zeolite frameworks (GIS, MFI, CHA, FAU). Reprinted with permission from Ref. [28]. Copyright 2021, Springer Nature. (d) Gas-phase water adsorption isotherm at 298 K for H-MFI zeolites of varying Si/Al ratios. (e) Heat of water adsorption on H-MFI zeolites at varying water/BAS ratios. (f) Schematic of species distribution (hydronium ion clusters and cyclohexanol) within H-MFI micropores before, during partial adsorption, and upon saturation of cyclohexanol. (g) The volume occupied by hydronium ion clusters in H-MFI micropores at saturated adsorption of cyclohexanol and phenol. Reprinted with permission from Ref. [35]. Copyright 2019, John Wiley and Sons.
Fig. 3. (a) 17O MQMAS NMR spectra with 1H decoupling at 14.1 T of SSZ-13/H217O slurry (25 μL/25 mg) aged 1?h at room temperature. The asterisk (*) denotes the H217O(l) signal. Reprinted with permission from Ref. [42]. Copyright 2019, Springer Nature. 17O MAS (b) and isotropic projections (c) of MQMAS NMR spectra at 14.1 T of H-MOR/H217O slurry (50 μL/50 mg) recorded after different aging durations. The spectra are normalized. Reprinted with permission from Ref. [43]. Copyright 2019, American Chemical Society.
Fig. 4. (a) Encapsulation of TMP and pyridine molecules into CHA cavities via reversible cleavage and reformation of T-O-T bonds under mild hydrothermal conditions. (b) Chemisorbed pyridine content in SAPO-34 with and without water at 100-300 °C. (c) 2D 1H-31P HETCOR NMR spectrum of TMP-SAPO-34-300HT recorded with a contact time of 3 ms. (d) CHA crystal structure. (e) Selectivity of ethene and light olefins during methanol conversion over fresh SAPO-34, Py-SAPO-34-200HT, and TMP-SAPO-34-300HT, the latter two prepared via hydrothermal encapsulation of pyridine at 200?°C or TMP at 300?°C, respectively. Reprinted with permission from Ref. [21]. Copyright 2020, John Wiley and Sons.
Fig. 5. Schematic illustration of dealumination and desilication processes induced by attack of a single H2O molecule (a,b) or two H2O molecules (c). PT and BB in (c) represent proton transfer and Al-O(H) bond breaking, respectively. Reprinted with permission from Ref. [66,68,70]. Copyright 2012, John Wiley and Sons. Copyright 2016, Elsevier. Copyright 2019, American Chemical Society.
Fig. 6. (a) Free energy diagram of H-SSZ-13 dealumination for the single-water (grey) and multi-water (blue) pathways, calculated using DFT-MD umbrella simulations. Insets show the corresponding transition states. Reprinted with permission from Ref. [71]. Copyright 2019, Royal Society of Chemistry. (b) Correlation between the broken Al-O bonds and activation energies (Ea) in adsorption states. Reprinted with permission from Ref. [63]. Copyright 2020, American Chemical Society.
Fig. 7. (a) 27Al{1H} D-HMQC spectra of dehydrated H-ZSM-5 (Si/Al = 15) acquired at 19.6 T. The signal regions labeled ii arise from Al(IV)-1 species, while those labeled i, iii, and iv arise from Al(IV)-2 species and its associated hydroxyl groups. (b) Schematic diagram of the structures of Al(IV)-1 and Al(IV)-2 species. (c) 27Al MQMAS spectra of dehydrated H-ZSM-5 (Si/Al = 15) recorded at 19.6 T before AHFS washing and (d) after AHFS washing. Reprinted with permission from Ref. [73]. Copyright 2021, American Chemical Society.
Fig. 8. (a) 27Al MQMAS (left) and 1H{27Al} MQ-D-RINEPT (right) spectra of dehydrated Na/H-Y cal923 zeolite (calcined at 923 K in air). (b) 1H{27Al} MQ-D-RINEPT spectra of dehydrated H-Y cal923 (calcined at 923 K in air) after pyridine-d5 adsorption. All spectra were recorded at 18.8 T. (c) Proposed zeolite dealumination mechanism. Reprinted with permission from Ref. [77]. Copyright 2024, American Chemical Society.
Fig. 9. Schematic illustration of desilication mechanisms induced by attack of a single H2O molecule (a,b) or two H2O molecules (c), and silicon island formation (d) via sequential Si/P and Si/Al exchanges within the SAPO structure. Reprinted with permission from Ref. [97-99]. Copyright 2013, American Chemical Society. Copyright 2015, American Chemical Society. Copyright 2015, American Chemical Society.
Fig. 10. (a,b) SAPO-34 loaded with methanol-water mixture (5:0 and 1:4 per BAS) at 330 °C and around ambient pressure. (x:y)mw,sim indicates x MeOH and y H2O molecules per BAS in the simulation. (c) Induction times of single H-SAPO-34 crystals was monitored via in-situ UV-vis microspectroscopy as a function of water content. Optical images and UV-vis spectra of single SAPO-34 crystals during MTO with methanol-water ratios of 1:0 (d), 1:4 (e), and 1:12 (f); showing proression from induction period (green) to aromatic formation (blue) and deactivation (black). Reprinted with permission from Ref. [102]. Copyright 2016, American Chemical Society. (g) Conversion of TRI (XTRI) during OME synthesis over H-beta zeolite at varying water contents in OME1 (T = 30 °C, 0.5 wt% catalyst, OME1:TRI = 3.3). (h) Schematic illustration of the proposed mechanism of water inhibition during OME synthesis over H-Beta zeolite. Reprinted with permission from Ref. [112]. Copyright 2020, American Chemical Society.
Fig. 11. (a) Schematic illustrating water driving benzene toward the surface methoxy species (SMS) to form the active SMS-benzene complex, promoting benzene methylation. Reprinted with permission from Ref. [13]. Copyright 2023, John Wiley and Sons. (b) Effects of water co-feeding on ethene conversion over H-ZSM-5 zeolite at 300 and 350 °C. Insets depict the density distributions of ethene and water around the BASs in H-ZSM-5 zeolite at both temperatures. The red and bluish clouds illustrate the adsorption probability distributions of water and ethene molecules, respectively. Reprinted with permission from Ref. [110]. Copyright 2020, American Chemical Society. (c) In the MTH reaction catalyzed by H-ZSM-5, the spatial distribution of hydrophilic cyclopentenyl cations, key intermediates, within the fixed-bed reactor generates a gradient distribution of adsorbed water along the axial positions, and the adsorbed water promotes the conversion of cyclopentenyl cations to aromatic compounds. Reprinted with permission from Ref. [117]. Copyright 2024, American Chemical Society.
Fig. 12. (a) Unit cell-normalized concentrations of H3O+hydr. (triangles) and ionic strength (circles) as a function of BAS concentration. (b) Reaction steps and energy profiles for cyclohexanol dehydration catalyzed by H3O+hydr. in H-MFI zeolite under ideal and nonideal aqueous conditions. (c) Reaction free-energy barriers and excess chemical potential (μexcess) of the ground state (GS) and transition state (TS) under the ideal condition and under an ionic strength. (d) TOF as a function of ionic strength under the catalysis of HCl (black) at 453 K and H-MFI (orange) at 423 K. (e) Schematic of H3O+hydr. and cyclohexanol in H-MFI micropore channels. (f) GS and TS enthalpies as a function of the mean distance (db-b) and volume (Vb-b) between the boundaries of neighboring H3O+hydr.. Reprinted with permission from Ref. [14]. Copyright 2021, American Association for the Advancement of Science (AAAS).
Fig. 13. (a) DFT-simulated methanol-to-olefins catalytic cycle via 1,4-DiMN over SAPO-34, showing Gibbs free energies and rate constants in the absence (black) and presence (red) of water at 773 K. (b) Optimized structures of the IM1 reactant without water and with water assistance. Reprinted with permission from Ref. [12]. Copyright 2024, Elsevier. (c) H2O-assisted proton transfer route over a dicopper [Cu]+-[Cu]+ site in Cu-BEA. (d) CH3OH productivities of Cu-BEA with different Cu loadings during N2O-DMTM in the presence (red) and absence (black) of H2O; reaction conditions: N2O:CH4:H2O:He = 30:15:10(0):45(55), GHSV = 12000 h-1, T = 320 °C. (e) Product selectivity of Cu-BEA-0.6% after 70 h of testing at 320 °C with and without H2O. Reprinted with permission from Ref. [125]. Copyright 2021, John Wiley and Sons.
Fig. 14. Selective transformation of coke into specific naphthalenic species over deactivated SAPO-34 catalysts. Reprinted with permission from Ref. [132]. Copyright 2021, Springer Nature.
|
| [1] | 孙燕, 张蕾. 双功能核壳Cu2O@NiFe2O4 Z型纳米反应器光辅助电催化同步氧化-还原合成鸟粪石[J]. 催化学报, 2025, 76(9): 230-241. |
| [2] | 张冰洁, 王春燕, 杨甫林, 王书莉, 冯立纲. 功函数差异自发诱导Ir/MoSe2内置电场催化高效PEM水电解[J]. 催化学报, 2025, 75(8): 95-104. |
| [3] | 眭琦, 李辉, 陶晨, 李冉, 高玉洁, 杨婷婷, 郑鸿帅, 夏立新, 李斐, 姜毅. 探索内部界面键合与多金属协同作用以促进光电化学水分解[J]. 催化学报, 2025, 75(8): 115-124. |
| [4] | 衣启松, 林露, 耿华伟, 陈少华, 邵元超, 何平, 刘志峰, 许海梅, 陈铁红, 刘远帅, Valentin Valtchev. 氟离子介导酸性体系合成H-ZSM-5分子筛及其液相环己醇催化转化性能研究[J]. 催化学报, 2025, 74(7): 97-107. |
| [5] | 许远杰, 侯润, 池坤翔, 刘波, 安泽民, 吴立志, 谭理, 宗绪鹏, 戴翼虎, 谢在来, 汤禹. 耐水性的Pd-Co3O4催化界面用于甲烷完全氧化反应: 活性结构和反应路径研究[J]. 催化学报, 2025, 74(7): 191-201. |
| [6] | 郑馨龙, 宋一铭, 王崇太, 高奇志, 邵钟鋆, 林佳鑫, 翟佳迪, 李静, 史晓东, 吴道雄, 刘维峰, 黄玮, 陈琦, 田新龙, 刘雨昊. 铜/锌体系多元过渡金属硫化物光催化剂的半导体特性及其光催化制氢的应用与挑战[J]. 催化学报, 2025, 74(7): 22-70. |
| [7] | 陈阳, 唐宇, 韩雷云, 刘佳颜, 华英杰, 赵旭东, 刘晓旸. 双壳层空心纳米球NiCo₂S₄@CoS₂/MoS₂: 通过协同效应增强析氧催化活性用于水分解[J]. 催化学报, 2025, 74(7): 394-410. |
| [8] | 梁婉滢, 许光月, 傅尧. 分子筛限域铜基催化剂上糠醛的精确受限过渡态构型选择性加氢[J]. 催化学报, 2025, 74(7): 71-81. |
| [9] | 张自豪, 张家铭, 王海峰, 刘梦, 许垚, 刘铠玮, 张博杨, 史珂, 张继方, 马贵军. 基于Sm2Ti2O5S2纳米片各向异性电荷迁移性质提升光催化分解水产氢活性[J]. 催化学报, 2025, 74(7): 341-351. |
| [10] | 王效阳, 傅梓淇, 罗子怡, 刘威迪, 丁佳, 曾建荣, 陈亚楠, 胡文彬. 同时实现Pt/C催化剂的超高载量和超细粒径[J]. 催化学报, 2025, 74(7): 425-437. |
| [11] | 靳一鸣, 成文静, 罗威. 单原子钌诱导界面水结构调控实现高效的碱性氢氧化反应[J]. 催化学报, 2025, 74(7): 240-249. |
| [12] | 代继澳, 鲜靖林, 刘凯思, 吴植傲, 樊淼, 覃姝彤, 姜会钰, 徐卫林, 金桓宇, 万骏. 非常规亚稳态立方相二维LaMnO3用于高效碱性海水析氧反应[J]. 催化学报, 2025, 74(7): 228-239. |
| [13] | 安博涵, 李鑫, 刘威龙, 董继鹏, 边锐超, 张璐瑶, 李宁, 高旸钦, 戈磊. W掺杂调控Jahn-Teller效应构建高稳定性W-CoMnP析氢电催化剂[J]. 催化学报, 2025, 74(7): 264-278. |
| [14] | 庹杰, 盛振腾, 龚贤晨, 杨琪, 吴鹏, 徐浩. ZnCeZrOx/MCM-22择形催化二氧化碳加氢耦合甲苯甲基化反应[J]. 催化学报, 2025, 73(6): 174-185. |
| [15] | 胡文德, 柯俊, 王仰东, 王传明. 合成气制烯烃双功能催化剂中分子筛拉动效应的微观动力学模拟[J]. 催化学报, 2025, 73(6): 222-233. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||