催化学报 ›› 2025, Vol. 79: 32-67.DOI: 10.1016/S1872-2067(25)64817-0
郭昊天a, 赵路路a, 刘欣宇a, 李晶b, 王鹏飞a, 柳宗琳a, 王琳琳a, 舒杰c, 伊廷锋a,b,d,*(
)
收稿日期:2025-05-25
接受日期:2025-07-28
出版日期:2025-12-18
发布日期:2025-10-27
通讯作者:
伊廷锋
基金资助:
Haotian Guoa, Lulu Zhaoa, Xinyu Liua, Jing Lib, Pengfei Wanga, Zonglin Liua, Linlin Wanga, Jie Shuc, Tingfeng Yia,b,d,*(
)
Received:2025-05-25
Accepted:2025-07-28
Online:2025-12-18
Published:2025-10-27
Contact:
Tingfeng Yi
About author:Ting-Feng Yi (School of Resources and Materials, Northeastern University at Qinhuangdao) received M.S. degree in 2004 and Ph.D. degree in 2007 from Harbin Institute of Technology. He joined the Anhui University of Technology as an assistant professor in 2007 and was promoted to a full professorship in 2011. His research focuses on electrocatalysis, water electrolysis and chemical energy conversation, combining experimental investigations with theoretical simulation. He has published over 240 peer-reviewed papers and holds 17 Chinese invention patents and 2 Dutch invention patents. His work has been cited over 11,000 times. In addition, as editor in chief, he also wrote two books: Electrode Materials for Lithium Ion Batteries, and Fundamentals and Applications of Sodium Ion Batteries. He was invited as a member of the Senior Editorial Board of Acta Physico-Chimica Sinica Since 2024.
Supported by:摘要:
随着全球能源转型加速, 开发高效且可持续的储能技术十分关键. 锌空气电池(ZABs)因其高理论能量密度和低成本的优势, 成为有力的竞争者. 在该类电池中, 开发高效的氧还原反应(ORR)/氧析出反应(OER)催化剂对提升其电化学性能至关重要. 金属有机框架(MOF)是一种通过配位键将有机和无机成分结合的多孔材料. 而MOF衍生的材料不仅能保留前驱体的高比表面积和高孔隙率, 还能有效提高导电性和电荷转移效率. 研究发现, 通过静电纺丝技术与MOF结合, 将MOF集成到连续纳米纤维网络中可以有效避免MOF结构坍塌、低导电性以及活性位点溶出等问题. 所制备的静电纺丝-MOF复合材料能有效提高锌空气电池的电化学性能. 因此, 深入探讨静电纺丝-MOF复合材料的协同构建、形貌特征以及性能提升策略, 对于开发用于锌空气电池的高性能氧电催化剂具有重要意义.
本文系统总结了静电纺丝-MOF复合材料在锌空气电池领域的研究进展, 从静电纺丝技术与MOF前驱体结合的优势、复合材料的不同纤维形貌, 以及催化剂的性能提升策略等方面进行阐述. 首先, 简要介绍了静电纺丝的工作原理和MOF作为前驱体的优点, 特别强调了两者结合的制备方法和协同优势. 具体体现在增强催化剂结构稳定性、提升电子/离子传输效率等方面. 然后, 从理论描述符、塔菲尔斜率分析和锌空气电池失效机制三个方面进行讨论, 为氧电催化剂的设计提供理论支撑. 随后, 重点介绍了多孔、中空、核壳和珠串四种特征纤维形貌的制备方法、结构特点及其应用于锌空气电池带来的性能提升. 此外, 进一步讨论了提升静电纺丝-MOF复合材料催化性能的策略, 深入分析了不同过渡金属中心对催化活性的影响. 通过多金属协同效应, 能够优化电子结构、调控中间体吸附能并降低反应能垒, 从而有效提升催化性能. 之后此外, 还探讨了大语言模型在三金属催化剂设计中的应用潜力. 杂原子掺杂与缺陷工程的协同调控被证明是另一有效策略, 通过调变电子结构、增加活性位点和改善电荷转移效率, 从而有效增强了催化剂的性能. 最后, 讨论了静电纺丝-MOF氧电催化剂迈向工业化生产面临的挑战. 未来研究应聚焦于推动跨学科协同攻关, 以提升材料的生产效率与产品质量, 促进规模化生产. 同时, 利用先进表征技术, 深入解析催化活性起源, 进一步增强材料的稳定性及抗腐蚀性. 此外, 应深度融合人工智能技术, 从而精确调控静电纺丝参数、预测催化剂性能, 加速材料的筛选与优化进程.
综上所述, 本文系统的总结了近年来静电纺丝-MOF氧电催化剂应用于锌空气电池中的研究进展以及面临的挑战和未来的发展方向, 以期为理解先进能量转换和存储设备的设计和制造提供有价值的见解和指导.
郭昊天, 赵路路, 刘欣宇, 李晶, 王鹏飞, 柳宗琳, 王琳琳, 舒杰, 伊廷锋. 静电纺丝技术与MOFs结合: 推动高性能锌空气电池发展[J]. 催化学报, 2025, 79: 32-67.
Haotian Guo, Lulu Zhao, Xinyu Liu, Jing Li, Pengfei Wang, Zonglin Liu, Linlin Wang, Jie Shu, Tingfeng Yi. Electrospinning technology combined with MOFs: Bridging the development of high-performance zinc-air batteries[J]. Chinese Journal of Catalysis, 2025, 79: 32-67.
Scheme 1. Representative timeline of electrospun-MOF composite materials as oxygen electrocatalysts in the field of ZABs. All insets come from the literature. Reproduced with permission from Ref. [49]. Copyright 2020, Elsevier. Reproduced with permission from Ref. [50]. Copyright 2021, Wiley-VCH. Reproduced with permission from Ref. [51]. Copyright 2022, Wiley-VCH. Reproduced with permission from Ref. [52]. Copyright 2023, Elsevier. Reproduced with permission from Ref. [53]. Copyright 2024, Springer Nature. Reproduced with permission from Ref. [54]. Copyright 2025, Oxford University Press.
Fig. 1. (a) electrospinning equipment and a variety of electrospinning. Reproduced with permission from Ref. [60]. Copyright 2016, Royal Society of Chemistry. (b) Surface plot of behavior of axial velocity at 10 cm. (c) Surface plot of the behavior of axial velocity at 20 cm. (d) Representation of axial velocity over time for λBratu = 0.5. Reproduced with permission from Ref. [65]. Copyright 2024, Springer Nature.
Fig. 2. Outlines the systematic synthesis process of the Co-based precursor (a) and SEM images (b). Reproduced with permission from Ref. [73]. Copyright 2025, Royal Society of Chemistry. (c) Reaction pathway of US-MOFNFs. (d) SEM images of MOFs obtained under solvothermal conditions for 6 h. Reproduced with permission from Ref. [75]. Copyright 2025, Elsevier. (e) Schematic diagram depicting the fabrication process of the CoNP/SA-NC/Fe-NCNTs electrocatalyst. (f) The HRTEM patterns of CoNP/SA-NC/Fe-NCNTs catalyst. (g) HAADF-STEM diagrams of CoNP/SA-NC/Fe-NCNTs catalyst. Reproduced with permission from Ref. [77]. Copyright 2025 Wiley-VCH. (h) SEM images of Fe-ZIF-8/ZIF-8. SEM photographs of Fe-8/8-CN (i) and Fe-8-CN (j). Reproduced with permission from Ref. [81]. Copyright 2024, American Chemical Society.
Fig. 3. (a) Illustration depicting the fabrication procedure of MAPC (A). Reproduced with permission from Ref. [94]. Copyright 2024, Elsevier. (b) Schematic diagram depicting the synthesis of MOF@Ru and the detection and adsorption mechanism of AFB1 using a ratiometric fluorescence probe. Reproduced with permission from Ref. [95]. Copyright 2024, Elsevier. (c) Fabrication of BG-PLA NFMs through coaxial electrospinning technique. Reproduced with permission from Ref. [96]. Copyright 2025, Elsevier. (d) Scheme for the synthesis of CoxP@CF-900. Reproduced with permission from Ref. [97]. Copyright 2021, Wiley-VCH. (e) Illustration of the ORR mechanism catalyzed by Ru@FeZn-HNC/CNFs. Reproduced with permission from Ref. [98]. Copyright 2025, Elsevier. (f) Schematic diagram of PMMNFs@Zn/Co-ZIF synthesis. Reproduced with permission from Ref. [99]. Copyright 2023, Elsevier.
Fig. 4. (a) Preparation Process of Fe-ZCNF. (b) High-resolution SEM image. (c) galvanostatic charge-discharge voltage cycling curve at 10 mA cm-2. Reproduced with permission from Ref. [148]. Copyright 2025 Elsevier. (d) Schematic depiction of the fabrication route for ZxNy-CNFs. (e) Galvanostatic cycling stability of ZABs at 5 mA cm-2. Reproduced with permission from Ref. [149]. Copyright 2025, Elsevier. (f) Schematic illustration of the synthesis procedure of FeN4-NFS-CNF. (g) SEM images of FeN4-NFS-CN. (h,i) TEM images of FeN4-NFS-CNF. Reproduced with permission from Ref. [155]. Copyright 2023, Wiley-VCH. (j) Schematic diagram of the synthesis process for NiCo@C@CoMn CNFs. Reproduced with permission from Ref. [156]. Copyright 2025, Elsevier. (k) Galvanostatic charge-discharge cycling curves at 5 mA cm-2, and the insert is the photo of the solid battery with different bending angles. Reproduced with permission from Ref. [51]. Copyright 2022, Wiley-VCH.
Fig. 5. (a) Illustration of the fabrication process for Co-doped flexible carbon nanofiber membranes via the core-shell electrospinning method. Reproduced with permission from Ref. [160]. Copyright 2022, Elsevier. (b) TEM images of the Co-NFs. (c,d) TEM images of the Co-CSNFs. Reproduced with permission from Ref. [161]. Copyright 2023, Elsevier. (e) Stepwise synthesis diagram of CNFs/CoZn-MOF@COF composite. Reproduced with permission from Ref. [163]. Copyright 2024, Elsevier. (f) Schematic of ORR process in bead-like Co-N-C/CNF composite. Reproduced with permission from Ref. [166]. Copyright 2022, Springer Nature. (g,h,i) TEM images of Fe@NC-Ac-2S-800. Reproduced with permission from Ref. [167]. Copyright 2024, Elsevier. (j) Schematic diagram about the beaded Fe, Co-N-C/CNF catalyst for ORR and OER reactions. (k) Schematic illustration about covalent bond hybridization between active centers and ORR (OER) intermediates for Fe, Co-N-C/CNF. Reproduced with permission from Ref. [168]. Copyright 2024, American Chemical Society.
| Catalysts | Voltage (kV) | Electrospinning solution (precursor/polymer/solvent) | Working distance (cm)/temperature (°C)/humidity (%) | Annealing temperature (°C) | Morphology | Active sites | Surface area (BET N2 adsorption- desorption measurements) (m2 g-1) | E1/2 [V] (ORR) Pt/C | Ej=10 [V] (OER)/ RuO2 | Electrolyte ORR/OER 1600 rpm/0 rpm | Peak PC [mW cm-2] @Window voltage [V] | Cycling stability | Rate performance | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fe-ZCNF | 22 | ZIF-8/ PAN/DMF | 15/—/— | 900 (N2, 2 h) | porous | Fe-Nx | 1035.5 | 0.88/ 0.86 | 1.63/ 1.6 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 179.2@ 0.75 | >200 h/10 mA cm-2 | Stable discharge voltage plateau at 10-100 mA cm-2 | [148] |
| ZN3- CNFs- 900 | 15 | ZnCo-ZIF/ PVP, PAN/DMF | 12/18-22/45 | 900 (N2, 2 h) | porous | Co-Nx | 562.77 | 0.834/ 0.824 | 1.695/ 1.692 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 111@ 0.63 | 400 h/5 mA cm-2 | — | [149] |
| N-CNT@ MOF-Co/HO-BN/CNFs | 18 | Co(NO3)2/ HO-BN/PAN/DMF | 15/ | 1000 (N2, 2 h) | porous | Co-Nx | 352 | 0.84/ 0.84 | 1.51/ 1.49 (IrO2) | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 142.9@ 0.45 | >200 h/5 mA cm-2 | — | [150] |
| FeN4- NFS-CNF | 19 | ZnFe-ZIF/ PAN, PMMA/DMF | 15/—/— | 1000 (N2, 1 h) | hollow | Fe-N4 | 1693.98 | 0.90/ 0.84 | 1.50/ 1.57 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 201.5@ 0.6 | 1000 h /10 mA cm-2 | 0.25V gap @10mA cm-2, Holds 1.14V @50mA cm-2, Superior to Pt/C | [155] |
| NiCo@C@CoMnCNFs | 15 | Ni (Ac)2, Co (Ac)2/ PMMA, PVP, PAN/ DMF | 15/25-30 /30-40 | 800 (Ar, 2 h) | hollow | CoMn,NiCo | 325.9 | 0.82/ 0.83 | 1.628/ 1.738 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 130.3@ 0.59 | 1650 h/5 mA cm-2 | — | [156] |
| NiFe@ C@Co CNFs | 15 | Ni(Ac)2, Fe(AcAc)3/ PAN, PMMA/ DMAC | 15/25/25 | 800 (N2, 2 h) | hollow | Co-N, NiFe-N | 209 | 0.87/ 0.85 | 1.6/1.599 | 0.1 mol L-1 KOH/0.1 mol L-1 KOH | 130@ 0.52 | 67 h/5 mA cm-2 | — | [51] |
| Co-N- CCNFMs | 20 | Zn/Co-ZIFs/ PVP, PAN/DMF | — | 500 (Ar, 1 h), 900 (Ar, 1 h) | core- shell | Co-N4 | 750.87 | 0.84/ 0.85 | 1.559/ >1.599 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 61.5@ 0.6 | 37 h/2 mA cm-2 | Voltage retention = 100% from 1 to 15 mA cm-2 | [160] |
| Co- CSNFs | 18 | Co (NO3)2·6H2O/PAN/DMF | — | 1000 (N2, 1h) | core- shell | Co-Nx | — | 0.86/ 0.88 | — | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 57.48@ 0.58 | 366 h/- | — | [161] |
| CNFs/CoZn-MOF@COF | 17 | 2-MeIM /PAN/DMF | 19/—/— | 800(Ar, 2h) | core- shell | Co-Nx, Zn-Nx | 381.26 | 0.82/ 0.83 | 1.573/- | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 203.63@ 0.74 | 180 h/10 mA cm-2 | Outperforms Pt/C in rate performance over the range of 2-50 mA cm-2 | [163] |
| Co-N-C/CNF | 18 | ZIF-67 /PAN/DMF | — | 800(Ar, 1h) | beaded | CoNP-N1-C2 | 332.5 | 0.859/ 0.857 | — | 0.1 mol L-1 KOH/- | 159@ 0.68 | >100 h/10 mA cm-2 | Outperforms Pt/C in rate performance over 2-15 mA cm-2 | [166] |
| Fe, Co-N-C/CNF | 17 | Fe, Co-ZIF /PAN/ methanol | 18-25/—/— | 800(Ar, 1h) | beaded | Fe-Nx, Co-Nx | 299.9 | 0.878/0.857 | 1.624 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 152@ 0.68 | 120 h/10 mA cm-2 | — | [168] |
| CoSe2@NC@ NCNFs | 15 | ZIF-67 /PAN/DMF | 15/—/— | 1000 (Ar) | beaded | Co-Nx-C, CoSe2 | 125.6 | 0.80/ 0.86 | 1.51/ 1.53 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 126.8@ 0.6 | >240 cycles /10 mA cm-2 | Outperforms Pt/C in rate performance over 1-25 mA cm-2 | [169] |
Table 1 Comparison of physical parameters and electrochemical parameters of catalysts with different fiber morphologies.
| Catalysts | Voltage (kV) | Electrospinning solution (precursor/polymer/solvent) | Working distance (cm)/temperature (°C)/humidity (%) | Annealing temperature (°C) | Morphology | Active sites | Surface area (BET N2 adsorption- desorption measurements) (m2 g-1) | E1/2 [V] (ORR) Pt/C | Ej=10 [V] (OER)/ RuO2 | Electrolyte ORR/OER 1600 rpm/0 rpm | Peak PC [mW cm-2] @Window voltage [V] | Cycling stability | Rate performance | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fe-ZCNF | 22 | ZIF-8/ PAN/DMF | 15/—/— | 900 (N2, 2 h) | porous | Fe-Nx | 1035.5 | 0.88/ 0.86 | 1.63/ 1.6 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 179.2@ 0.75 | >200 h/10 mA cm-2 | Stable discharge voltage plateau at 10-100 mA cm-2 | [148] |
| ZN3- CNFs- 900 | 15 | ZnCo-ZIF/ PVP, PAN/DMF | 12/18-22/45 | 900 (N2, 2 h) | porous | Co-Nx | 562.77 | 0.834/ 0.824 | 1.695/ 1.692 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 111@ 0.63 | 400 h/5 mA cm-2 | — | [149] |
| N-CNT@ MOF-Co/HO-BN/CNFs | 18 | Co(NO3)2/ HO-BN/PAN/DMF | 15/ | 1000 (N2, 2 h) | porous | Co-Nx | 352 | 0.84/ 0.84 | 1.51/ 1.49 (IrO2) | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 142.9@ 0.45 | >200 h/5 mA cm-2 | — | [150] |
| FeN4- NFS-CNF | 19 | ZnFe-ZIF/ PAN, PMMA/DMF | 15/—/— | 1000 (N2, 1 h) | hollow | Fe-N4 | 1693.98 | 0.90/ 0.84 | 1.50/ 1.57 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 201.5@ 0.6 | 1000 h /10 mA cm-2 | 0.25V gap @10mA cm-2, Holds 1.14V @50mA cm-2, Superior to Pt/C | [155] |
| NiCo@C@CoMnCNFs | 15 | Ni (Ac)2, Co (Ac)2/ PMMA, PVP, PAN/ DMF | 15/25-30 /30-40 | 800 (Ar, 2 h) | hollow | CoMn,NiCo | 325.9 | 0.82/ 0.83 | 1.628/ 1.738 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 130.3@ 0.59 | 1650 h/5 mA cm-2 | — | [156] |
| NiFe@ C@Co CNFs | 15 | Ni(Ac)2, Fe(AcAc)3/ PAN, PMMA/ DMAC | 15/25/25 | 800 (N2, 2 h) | hollow | Co-N, NiFe-N | 209 | 0.87/ 0.85 | 1.6/1.599 | 0.1 mol L-1 KOH/0.1 mol L-1 KOH | 130@ 0.52 | 67 h/5 mA cm-2 | — | [51] |
| Co-N- CCNFMs | 20 | Zn/Co-ZIFs/ PVP, PAN/DMF | — | 500 (Ar, 1 h), 900 (Ar, 1 h) | core- shell | Co-N4 | 750.87 | 0.84/ 0.85 | 1.559/ >1.599 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 61.5@ 0.6 | 37 h/2 mA cm-2 | Voltage retention = 100% from 1 to 15 mA cm-2 | [160] |
| Co- CSNFs | 18 | Co (NO3)2·6H2O/PAN/DMF | — | 1000 (N2, 1h) | core- shell | Co-Nx | — | 0.86/ 0.88 | — | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 57.48@ 0.58 | 366 h/- | — | [161] |
| CNFs/CoZn-MOF@COF | 17 | 2-MeIM /PAN/DMF | 19/—/— | 800(Ar, 2h) | core- shell | Co-Nx, Zn-Nx | 381.26 | 0.82/ 0.83 | 1.573/- | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 203.63@ 0.74 | 180 h/10 mA cm-2 | Outperforms Pt/C in rate performance over the range of 2-50 mA cm-2 | [163] |
| Co-N-C/CNF | 18 | ZIF-67 /PAN/DMF | — | 800(Ar, 1h) | beaded | CoNP-N1-C2 | 332.5 | 0.859/ 0.857 | — | 0.1 mol L-1 KOH/- | 159@ 0.68 | >100 h/10 mA cm-2 | Outperforms Pt/C in rate performance over 2-15 mA cm-2 | [166] |
| Fe, Co-N-C/CNF | 17 | Fe, Co-ZIF /PAN/ methanol | 18-25/—/— | 800(Ar, 1h) | beaded | Fe-Nx, Co-Nx | 299.9 | 0.878/0.857 | 1.624 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 152@ 0.68 | 120 h/10 mA cm-2 | — | [168] |
| CoSe2@NC@ NCNFs | 15 | ZIF-67 /PAN/DMF | 15/—/— | 1000 (Ar) | beaded | Co-Nx-C, CoSe2 | 125.6 | 0.80/ 0.86 | 1.51/ 1.53 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 126.8@ 0.6 | >240 cycles /10 mA cm-2 | Outperforms Pt/C in rate performance over 1-25 mA cm-2 | [169] |
Fig. 6. (a) EPR spectra of the Fe-N4-C and Fe-N4/NGC-C. Magnetic susceptibility of Fe-N4-C (b) and Fe-N4/NGC-C (c). Reproduced with permission from Ref. [54]. Copyright 2025, Oxford University Press. (d) ORR polarization curves for the initial and 20000 cycles, respectively. (e) Normalized chronoamperometric curves of FeN4-FeNCP@MCF, FeN4@MCF, and Pt/C catalyst at 0.7 V versus RHE. Reproduced with permission from Ref. [177]. Copyright 2024, Wiley-VCH. (f) AC-HAADF-STEM of Fe SACs@PNCNFs. (g) LSV curves for OER in 0.1 mol L-1 KOH at 1600 rpm. (h) Tafel slopes. Reproduced with permission from Ref. [178]. Copyright 2025, Wiley-VCH. Co K-edge X-ray absorption near-edge structure spectra (i) and FT k2-weighted EXAFS spectra (j) for CoN5/PCNF, CoN4/PCNF and the reference samples of bulk Co, Co3O4, and CoPc. (k) In-situ Raman spectra of CoN5/PCNF recorded at various potentials in O2-saturated 0.1 mol L-1 KOH electrolyte. Reproduced with permission from Ref. [181]. Copyright 2024, Wiley-VCH.
Fig. 7. (a) Adsorption configurations at each key step on the Fe5@FeN4 and Co2Fe2@CoN4 sites in the Co2Fe2@CoN4─Fe5@FeN4 model. Reproduced with permission from Ref. [188]. Copyright 2024, Wiley-VCH. (b) TDOS curves. (c) ORR free energy diagrams of FeN4 site in NiN4-FeN4, and FeN4 site in NiN4-Fe5-FeN4 at 0 and 1.23 V vs. RHE. Reproduced with permission from Ref. [191]. Copyright 2025, Elsevier. (d) Free energy diagram of ORR steps on Fe-N4/Mn-N4 and Fe-N4. (e) Differential charge density of Fe-N4/Mn-N4 and Fe-N4. Reproduced with permission from Ref. [192]. Copyright 2024, Wiley-VCH. (f) Illustration of the formation for ES-Co/Zn-CNZIF with the proposed molecular structure. Reproduced with permission from Ref. [52]. Copyright 2023, Elsevier.
Fig. 8. (a) Geometric structures of single-atom, homo-/hetero-dual-atom, and homo-/hetero-trimetallic atom catalysts (TACs). (b) A smartwatch and a phone that are powered with an FSS-ZAB under the bent condition. Reproduced with permission from Ref. [196]. Copyright 2025, Wiley-VCH. (c) Atomic structures of electrocatalysts. Reproduced with permission from Ref. [197]. Copyright 2024, Elsevier. (d) Illustration of the synthetic process for S/N-CMF@FexCoyNi1-x-y-MOF. Reproduced with permission from Ref. [32]. Copyright 2023, Wiley-VCH. (e) Predictive performance of eight distinct ML regression models to minimize the overpotential. (f) Pearson correlation matrix. (g) Importance feature bar graph. Reproduced with permission from Ref. [200]. Copyright 2025, Wiley-VCH.
Fig. 9. (a) Electrospinning-based synthesis of Co, Ni-SAs/S, N-CNFs membrane catalyst. (b) High-resolution XPS spectra of S 2p orbitals of Co, Ni-SAs/S, N-CNFs. Reproduced with permission from Ref. [218]. Copyright 2024, Elsevier. (c) Synthesis route of ZIF-8 and ZIF-8 derived carbon. (d) Synthesis route of Zn-Im fibers and derived porous carbon fibers. (e) Synthesis route of high-content pyrrole-type Fe-N-C catalyst. Reproduced with permission from Ref. [219]. Copyright 2024, Royal Society of Chemistry. (f) XPS high-resolution energy spectrum of Co 2p. (g) OER polarization curves of different catalysts measured in 1 mol L-1 KOH solution at 1600 r min-1. (h) Overall polarization curves of different catalysts over the entire ORR and OER region. Reproduced with permission from Ref. [220]. Copyright 2023, Wiley-VCH.
| Catalysts | ORR and OER performance | ZAB performance | Ref. | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| E1/2 [V] (ORR)/ Pt/C | Ej=10 [V] (OER)/RuO2 | ΔE [V] | Electrolyte ORR/OER 1600 rpm/0 rpm | Electrolyte | OCV [V] | Peak PC [mW cm-2] @Window voltage [V] | Specific capacity (mAh g-1)/ Current density (mA cm-2) | Durability time (h)/ Current density (mA cm-2) | ||||||
| CoNC/ NCNTs@CNF | 0.78/0.78 | 1.62/1.55 | 0.84/ 0.77 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH | 1.423 | 260@0.7 | — | 43/5 | [49] | ||||
| Co/CNWs/CNFs | 0.82/0.85 | 1.64/— | 0.82/— | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.46 | 304@0.40 | 823/5 | 1500/5 | [50] | ||||
| NiFe@C@Co CNFs | 0.87/0.85 | 1.6/1.599 | 0.73/ 0.749 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.44 | 130@0.52 | 694/5 | 67/5 | [51] | ||||
| ES-Co/Zn-CNZIF | 0.857/ 0.834 | 1.692/1.603 | 0.835/ 0.769 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.527 | 215@0.65 | 802.6/10 | 254/10 | [52] | ||||
| CNT@Co- CNFF50-900 | 0.871/ 0.866 | 1.61/ 1.63(Ir/C) | 0.74/ 0.764 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH | 1.50 | 371@0.6 | 778/10 | >130/2 | [53] | ||||
| Fe-N4/NGC-C | 0.87/ <0.87 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.48 | 225@0.67 | 812/10 | >1200 cycles /10 | [54] | ||||
| CoNC-HCNFs | 0.83/0.83 | 1.57/1.55 | 0.74/ 0.72 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.41 | 255@- | — | 4/1 | [99] | ||||
| Fe-ZCNF | 0.88/0.86 | 1.63/1.6 | 0.75/ 0.74 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.59 | 179.2@ 0.75 | 788.5/10 | >200/10 | [148] | ||||
| ZN3-CNFs-900 | 0.834/ 0.824 | 1.695/1.692 | 0.861/ 0.868 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.43 | 111@0.63 | 791.6/5 | 400/5 | [149] | ||||
| N-CNT@MOF-Co/HO-BN/CNFs | 0.84/0.84 | 1.51/1.49 (IrO2) | 0.67/ 0.65 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.448 | 142.9@ 0.45 | 700/5 | >200/5 | [150] | ||||
| FeN4-NFS-CNF | 0.90/0.84 | 1.50/1.57 | 0.60/ 0.73 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.58 | 201.5@0.6 | 802/ | 1000/10 | [155] | ||||
| NiCo@C@ CoMnCNFs | 0.82/0.83 | 1.628/1.738 | 0.808/ 0.908 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.44 | 130.3@ 0.59 | 798.4/5 | 1650/5 | [156] | ||||
| Co-CSNFs | 0.86/0.88 | 1.70/1.69 | 0.84/ 0.81 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH | 1.37 | 57.48@ 0.58 | — | 366/— | [161] | ||||
| CNFs/CoZn-MOF@COF | 0.82/0.83 | 1.573/1.592 | 0.753/ 0.762 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.46 | 203.63@ 0.74 | 802.91/10 | 180/10 | [163] | ||||
| Co-N-C/CNF | 0.859/ 0.857 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.452 | 159@0.68 | 755/10 | >100/10 | [166] | ||||
| Fe, Co-N-C/CNF | 0.878/ 0.857 | 1.624/1.608 | 0.746/ 0.751 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.426 | 152@0.68 | 809.2/10 | 120/10 | [168] | ||||
| CoSe2@NC@ NCNFs | 0.80/0.86 | 1.51/1.53 | 0.71/ 0.67 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.43 | 126.8@0.6 | 763.1/10 | >240 cycles/ 10 | [169] | ||||
| FeN4-FeNCP@MCF | 0.894/ 0.865 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.489 | 208.1@ 0.65 | — | >350/5 | [177] | ||||
| Fe SACs@PNCNFs | 0.89/0.87 | 1.65/1.61 | 0.76/ 0.74 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.445 | 163@0.67 | 816/ 20 | >200/5 | [178] | ||||
| CoN5/PCNF | 0.92/ 0.856 | 1.53/1.58 | 0.61/ 0.724 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.52 | 273.8@ 0.63 | 784.2/10 | >600/10 | [181] | ||||
| Co, Fe-DACs/ NCs@PCF | 0.871/ 0.85 | 1.588/1.6 | 0.717/ 0.75 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.552 | 189.4@0.6 | 899.4/10 | 1500/2 | [188] | ||||
| CoSANi-NCNT/CNF | 0.86/0.85 | 1.47/1.478 (IrO2) | 0.618/ 0.628 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.54 | 132.23@ 0.53 | 803.5/10 | 120/10 | [182] | ||||
| NiN4-Fe5-FeN4@ PCF | 0.878/ 0.861 | 1.626/1.616 | 0.748/ 0.755 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.58 | — | 781.8/10 | >900/2 | [191] | ||||
| FeMn-N-C | 0.92/0.86 | 1.6/— | 0.68/— | 0.1 mol L-1 KOH/ 1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.494 | 151@0.63 | 795/— | 700/10 | [192] | ||||
| Co/Zn@NCF | 0.84/0.84 | 1.69/1.69 (IrO2) | 0.85/ 0.85 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 ZnCl2 | 1.42 | 202@0.6 | 760/10 | 666/5 | [140] | ||||
| Co,Ni-SAs/S, N-CNFs | 0.84/ <0.84 | 1.82/— | 0.98/— | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 ZnCl2 | 1.40 | 175@0.525 | 762/10 | 227/5 | [218] | ||||
| Im-Fe-NS-900 | 0.89/0.84 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.47 | 68.2@— | — | >90/5 | [219] | ||||
| CoP/CNF | 0.78/0.82 | 1.56/1.54 (IrO2) | 0.78/ 0.72 | 0.1 mol L-1 KOH/ 1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.43 | 164@0.65 | 780 /10 | 1200/5 | [220] | ||||
| NPS-HPCNF | 0.86/0.83 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.51 | 210@0.625 | 795/ | >1000/20 | [223] | ||||
Table 2 Summary of electrocatalytic and ZAB performance of electrospun-MOF composites as oxygen catalysts.
| Catalysts | ORR and OER performance | ZAB performance | Ref. | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| E1/2 [V] (ORR)/ Pt/C | Ej=10 [V] (OER)/RuO2 | ΔE [V] | Electrolyte ORR/OER 1600 rpm/0 rpm | Electrolyte | OCV [V] | Peak PC [mW cm-2] @Window voltage [V] | Specific capacity (mAh g-1)/ Current density (mA cm-2) | Durability time (h)/ Current density (mA cm-2) | ||||||
| CoNC/ NCNTs@CNF | 0.78/0.78 | 1.62/1.55 | 0.84/ 0.77 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH | 1.423 | 260@0.7 | — | 43/5 | [49] | ||||
| Co/CNWs/CNFs | 0.82/0.85 | 1.64/— | 0.82/— | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.46 | 304@0.40 | 823/5 | 1500/5 | [50] | ||||
| NiFe@C@Co CNFs | 0.87/0.85 | 1.6/1.599 | 0.73/ 0.749 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.44 | 130@0.52 | 694/5 | 67/5 | [51] | ||||
| ES-Co/Zn-CNZIF | 0.857/ 0.834 | 1.692/1.603 | 0.835/ 0.769 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.527 | 215@0.65 | 802.6/10 | 254/10 | [52] | ||||
| CNT@Co- CNFF50-900 | 0.871/ 0.866 | 1.61/ 1.63(Ir/C) | 0.74/ 0.764 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH | 1.50 | 371@0.6 | 778/10 | >130/2 | [53] | ||||
| Fe-N4/NGC-C | 0.87/ <0.87 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.48 | 225@0.67 | 812/10 | >1200 cycles /10 | [54] | ||||
| CoNC-HCNFs | 0.83/0.83 | 1.57/1.55 | 0.74/ 0.72 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.41 | 255@- | — | 4/1 | [99] | ||||
| Fe-ZCNF | 0.88/0.86 | 1.63/1.6 | 0.75/ 0.74 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.59 | 179.2@ 0.75 | 788.5/10 | >200/10 | [148] | ||||
| ZN3-CNFs-900 | 0.834/ 0.824 | 1.695/1.692 | 0.861/ 0.868 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.43 | 111@0.63 | 791.6/5 | 400/5 | [149] | ||||
| N-CNT@MOF-Co/HO-BN/CNFs | 0.84/0.84 | 1.51/1.49 (IrO2) | 0.67/ 0.65 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.448 | 142.9@ 0.45 | 700/5 | >200/5 | [150] | ||||
| FeN4-NFS-CNF | 0.90/0.84 | 1.50/1.57 | 0.60/ 0.73 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.58 | 201.5@0.6 | 802/ | 1000/10 | [155] | ||||
| NiCo@C@ CoMnCNFs | 0.82/0.83 | 1.628/1.738 | 0.808/ 0.908 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.44 | 130.3@ 0.59 | 798.4/5 | 1650/5 | [156] | ||||
| Co-CSNFs | 0.86/0.88 | 1.70/1.69 | 0.84/ 0.81 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH | 1.37 | 57.48@ 0.58 | — | 366/— | [161] | ||||
| CNFs/CoZn-MOF@COF | 0.82/0.83 | 1.573/1.592 | 0.753/ 0.762 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.46 | 203.63@ 0.74 | 802.91/10 | 180/10 | [163] | ||||
| Co-N-C/CNF | 0.859/ 0.857 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.452 | 159@0.68 | 755/10 | >100/10 | [166] | ||||
| Fe, Co-N-C/CNF | 0.878/ 0.857 | 1.624/1.608 | 0.746/ 0.751 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.426 | 152@0.68 | 809.2/10 | 120/10 | [168] | ||||
| CoSe2@NC@ NCNFs | 0.80/0.86 | 1.51/1.53 | 0.71/ 0.67 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.43 | 126.8@0.6 | 763.1/10 | >240 cycles/ 10 | [169] | ||||
| FeN4-FeNCP@MCF | 0.894/ 0.865 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.489 | 208.1@ 0.65 | — | >350/5 | [177] | ||||
| Fe SACs@PNCNFs | 0.89/0.87 | 1.65/1.61 | 0.76/ 0.74 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.445 | 163@0.67 | 816/ 20 | >200/5 | [178] | ||||
| CoN5/PCNF | 0.92/ 0.856 | 1.53/1.58 | 0.61/ 0.724 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.52 | 273.8@ 0.63 | 784.2/10 | >600/10 | [181] | ||||
| Co, Fe-DACs/ NCs@PCF | 0.871/ 0.85 | 1.588/1.6 | 0.717/ 0.75 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.552 | 189.4@0.6 | 899.4/10 | 1500/2 | [188] | ||||
| CoSANi-NCNT/CNF | 0.86/0.85 | 1.47/1.478 (IrO2) | 0.618/ 0.628 | 0.1 mol L-1 KOH/ 1.0 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.54 | 132.23@ 0.53 | 803.5/10 | 120/10 | [182] | ||||
| NiN4-Fe5-FeN4@ PCF | 0.878/ 0.861 | 1.626/1.616 | 0.748/ 0.755 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.58 | — | 781.8/10 | >900/2 | [191] | ||||
| FeMn-N-C | 0.92/0.86 | 1.6/— | 0.68/— | 0.1 mol L-1 KOH/ 1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.494 | 151@0.63 | 795/— | 700/10 | [192] | ||||
| Co/Zn@NCF | 0.84/0.84 | 1.69/1.69 (IrO2) | 0.85/ 0.85 | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 ZnCl2 | 1.42 | 202@0.6 | 760/10 | 666/5 | [140] | ||||
| Co,Ni-SAs/S, N-CNFs | 0.84/ <0.84 | 1.82/— | 0.98/— | 0.1 mol L-1 KOH/ 0.1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 ZnCl2 | 1.40 | 175@0.525 | 762/10 | 227/5 | [218] | ||||
| Im-Fe-NS-900 | 0.89/0.84 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.47 | 68.2@— | — | >90/5 | [219] | ||||
| CoP/CNF | 0.78/0.82 | 1.56/1.54 (IrO2) | 0.78/ 0.72 | 0.1 mol L-1 KOH/ 1 mol L-1 KOH | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.43 | 164@0.65 | 780 /10 | 1200/5 | [220] | ||||
| NPS-HPCNF | 0.86/0.83 | — | — | 0.1 mol L-1 KOH/— | 6 mol L-1 KOH + 0.2 mol L-1 Zn(Ac)2 | 1.51 | 210@0.625 | 795/ | >1000/20 | [223] | ||||
|
| [1] | 余成文, 梁乐程, 穆张岩, 尹绍祺, 刘欲文, 陈胜利. FeNC层稳定的L10-PtFe金属间纳米颗粒用于高效氧还原[J]. 催化学报, 2025, 75(8): 125-136. |
| [2] | 李晨浩, 王昊, 王卫卫, 白烁, 公忠彬, 桑勤勤, 张雨晴, 霍锋, 刘艳荣. PtCu纳米枝晶催化剂及其增强质子交换膜燃料电池稳定性研究[J]. 催化学报, 2025, 73(6): 322-333. |
| [3] | 刘利芳, 肖晔珺, 郭向阳, 金盛烨, 章福祥. 基于过饱和策略的MOFs晶面可控合成用于理解本征晶面效应[J]. 催化学报, 2025, 73(6): 153-158. |
| [4] | 余维来. 共享金属节点的核壳型金属有机框架促进界面电荷转移[J]. 催化学报, 2025, 73(6): 8-11. |
| [5] | 姚瑶, 徐菊萍, 邵敏华. 多晶金表面上析氢反应与氧还原反应的竞争[J]. 催化学报, 2025, 73(6): 271-278. |
| [6] | 李思明, 孙恩样, 魏鹏飞, 赵微, 裴随珠, 陈颖, 杨洁, 陈绘丽, 尹熙, 王旻, 李亚伟. 浸渍离子液体于多孔Fe-N-C电催化剂以改善聚合物电解质燃料电池电极动力学与质量传输[J]. 催化学报, 2025, 72(5): 277-288. |
| [7] | 唐江渔, 王啸, 王云发, 石敏, 霍彭, 吴建祥, 李巧霞, 徐群杰. 活性非键合氧介导NiFe2O4晶格氧氧化以实现高效稳定水氧化[J]. 催化学报, 2025, 72(5): 164-175. |
| [8] | 李如硕, 班涛, 赵丹凤, 胡发杰, 林璟, 黄秀兵, 陶志平, 王戈. 缺陷UiO-66(Ce)负载的具有优化微环境和电子态的镍纳米颗粒用于高效烯烃加氢反应[J]. 催化学报, 2025, 72(5): 344-358. |
| [9] | 胡婷婷, 冯盼盼, 褚宏旗, 高腾, 刘福胜, 周卫. 缺陷型介孔MIL-125(Ti)@BiOCl S 型异质结中内建电场的调控机制及光催化性能研究[J]. 催化学报, 2025, 69(2): 123-134. |
| [10] | 刘保发, 潘未接, 黄志洋, 赵熠, 罗祖洋, 塔伊尔詹•泰勒•伊西姆詹, 王宝, 杨秀林. F-N共掺杂调控多孔碳实现锌空气电池5300 h超稳定ORR催化[J]. 催化学报, 2025, 79(12): 100-111. |
| [11] | 李可欣, 袁浩, 杨祖保, 胡准. MOF包埋衍生策略缓释氧物种增强甲烷选择性氧化的活性与选择性: 基于瞬时原位红外的研究[J]. 催化学报, 2025, 78(11): 202-214. |
| [12] | 殷述虎, 程晓阳, 韩瑜, 朱挺, 于忠卫, 黄蕊, 徐骏, 姜艳霞, 孙世刚. 近邻调控钌单原子位点优化Fe-N4空间畸变增强酸性氧还原反应[J]. 催化学报, 2025, 78(11): 343-353. |
| [13] | 赵天佑, 胡凤鸣, 朱美琦, 杨昌杰, 汪新宇, 潘永周, 杨嘉睿, 张霞, 李文豪, 王定胜. 单原子催化剂在便携式能源与传感器技术中的未来发展[J]. 催化学报, 2025, 78(11): 100-137. |
| [14] | 王心琪, 张雪元, 焦梦改, 马润林, 谢芳, 万浩, 沈祥建, 张利利, 马炜, 周震. 石墨烯纳米片锚定Pt-N3O强配位结构加速电催化氧还原四电子转移过程[J]. 催化学报, 2025, 77(10): 227-235. |
| [15] | 亓文慧, 李秀艳, 顾少楠, 孙彬, 王轶男, 周国伟. 金属有机催化剂的电子结构调控在光催化产H2O2中的应用[J]. 催化学报, 2025, 77(10): 45-69. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||