催化学报 ›› 2025, Vol. 79: 32-67.DOI: 10.1016/S1872-2067(25)64817-0

• 综述 • 上一篇    下一篇

静电纺丝技术与MOFs结合: 推动高性能锌空气电池发展

郭昊天a, 赵路路a, 刘欣宇a, 李晶b, 王鹏飞a, 柳宗琳a, 王琳琳a, 舒杰c, 伊廷锋a,b,d,*()   

  1. a东北大学材料科学与工程学院, 辽宁沈阳110819
    b西南科技大学材料与化学学院, 环境友好能源材料国家重点实验室, 四川绵阳621010
    c宁波大学材料科学与化学工程学院, 浙江宁波315211
    d东北大学秦皇岛分校资源与材料学院, 河北省电介质与电解质功能材料重点实验室, 河北秦皇岛066004
  • 收稿日期:2025-05-25 接受日期:2025-07-28 出版日期:2025-12-18 发布日期:2025-10-27
  • 通讯作者: 伊廷锋
  • 基金资助:
    国家自然科学基金(52574348);国家自然科学基金(52374301);环境友好能源材料国家重点实验室开放基金(24kfhg06);河北省自然科学基金(E2024501010);河北省自然科学基金(B2024501004);石家庄市驻冀高校基础研究项目(241790667A);中央高校基本业务费(N2423013);东北大学秦皇岛分校河北省电介质与电解质功能材料重点实验室绩效补助经费(22567627H)

Electrospinning technology combined with MOFs: Bridging the development of high-performance zinc-air batteries

Haotian Guoa, Lulu Zhaoa, Xinyu Liua, Jing Lib, Pengfei Wanga, Zonglin Liua, Linlin Wanga, Jie Shuc, Tingfeng Yia,b,d,*()   

  1. aSchool of Materials Science and Engineering, Northeastern University, Shenyang 110819, Liaoning, China
    bState Key Laboratory of Environmental-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
    cSchool of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
    dKey Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, Hebei, China
  • Received:2025-05-25 Accepted:2025-07-28 Online:2025-12-18 Published:2025-10-27
  • Contact: Tingfeng Yi
  • About author:Ting-Feng Yi (School of Resources and Materials, Northeastern University at Qinhuangdao) received M.S. degree in 2004 and Ph.D. degree in 2007 from Harbin Institute of Technology. He joined the Anhui University of Technology as an assistant professor in 2007 and was promoted to a full professorship in 2011. His research focuses on electrocatalysis, water electrolysis and chemical energy conversation, combining experimental investigations with theoretical simulation. He has published over 240 peer-reviewed papers and holds 17 Chinese invention patents and 2 Dutch invention patents. His work has been cited over 11,000 times. In addition, as editor in chief, he also wrote two books: Electrode Materials for Lithium Ion Batteries, and Fundamentals and Applications of Sodium Ion Batteries. He was invited as a member of the Senior Editorial Board of Acta Physico-Chimica Sinica Since 2024.
  • Supported by:
    National Natural Science Foundation of China(52574348);National Natural Science Foundation of China(52374301);Open Project of State Key Laboratory of Environment-friendly Energy Materials(24kfhg06);Natural Science Foundation of Hebei Province(E2024501010);Natural Science Foundation of Hebei Province(B2024501004);Shijiazhuang Basic Research Project(241790667A);Fundamental Research Funds for the Central Universities(N2423013);Performance Subsidy Fund for Key Laboratory of Dielectric, Electrolyte Functional Material Hebei Province(22567627H)

摘要:

随着全球能源转型加速, 开发高效且可持续的储能技术十分关键. 锌空气电池(ZABs)因其高理论能量密度和低成本的优势, 成为有力的竞争者. 在该类电池中, 开发高效的氧还原反应(ORR)/氧析出反应(OER)催化剂对提升其电化学性能至关重要. 金属有机框架(MOF)是一种通过配位键将有机和无机成分结合的多孔材料. 而MOF衍生的材料不仅能保留前驱体的高比表面积和高孔隙率, 还能有效提高导电性和电荷转移效率. 研究发现, 通过静电纺丝技术与MOF结合, 将MOF集成到连续纳米纤维网络中可以有效避免MOF结构坍塌、低导电性以及活性位点溶出等问题. 所制备的静电纺丝-MOF复合材料能有效提高锌空气电池的电化学性能. 因此, 深入探讨静电纺丝-MOF复合材料的协同构建、形貌特征以及性能提升策略, 对于开发用于锌空气电池的高性能氧电催化剂具有重要意义.
本文系统总结了静电纺丝-MOF复合材料在锌空气电池领域的研究进展, 从静电纺丝技术与MOF前驱体结合的优势、复合材料的不同纤维形貌, 以及催化剂的性能提升策略等方面进行阐述. 首先, 简要介绍了静电纺丝的工作原理和MOF作为前驱体的优点, 特别强调了两者结合的制备方法和协同优势. 具体体现在增强催化剂结构稳定性、提升电子/离子传输效率等方面. 然后, 从理论描述符、塔菲尔斜率分析和锌空气电池失效机制三个方面进行讨论, 为氧电催化剂的设计提供理论支撑. 随后, 重点介绍了多孔、中空、核壳和珠串四种特征纤维形貌的制备方法、结构特点及其应用于锌空气电池带来的性能提升. 此外, 进一步讨论了提升静电纺丝-MOF复合材料催化性能的策略, 深入分析了不同过渡金属中心对催化活性的影响. 通过多金属协同效应, 能够优化电子结构、调控中间体吸附能并降低反应能垒, 从而有效提升催化性能. 之后此外, 还探讨了大语言模型在三金属催化剂设计中的应用潜力. 杂原子掺杂与缺陷工程的协同调控被证明是另一有效策略, 通过调变电子结构、增加活性位点和改善电荷转移效率, 从而有效增强了催化剂的性能. 最后, 讨论了静电纺丝-MOF氧电催化剂迈向工业化生产面临的挑战. 未来研究应聚焦于推动跨学科协同攻关, 以提升材料的生产效率与产品质量, 促进规模化生产. 同时, 利用先进表征技术, 深入解析催化活性起源, 进一步增强材料的稳定性及抗腐蚀性. 此外, 应深度融合人工智能技术, 从而精确调控静电纺丝参数、预测催化剂性能, 加速材料的筛选与优化进程.
综上所述, 本文系统的总结了近年来静电纺丝-MOF氧电催化剂应用于锌空气电池中的研究进展以及面临的挑战和未来的发展方向, 以期为理解先进能量转换和存储设备的设计和制造提供有价值的见解和指导.

关键词: 锌空气电池, 氧还原反应, 氧析出反应, 静电纺丝, 金属有机框架, 纳米纤维

Abstract:

Metal-organic frameworks (MOFs) are porous materials formed by the coordination of organic and inorganic components through coordination bonds. MOF-derived materials preserve the large surface area and inherent porosity of their parent structures, while simultaneously offering enhanced electrical conductivity and more efficient charge transport. Studies have shown that integrating electrospinning with MOFs into continuous nanofiber networks can effectively address issues such as MOF structural collapse, low conductivity, and leaching of active sites. Moreover, the electrospinning technique enables fine-tuning of the product’s morphology, architecture, and chemical composition, thereby unlocking new possibilities for advancing high-performance ZABs. This review provides a systematic overview of recent advances in non-precious metal electrocatalysts derived from electrospun-MOF composites and examines the unique advantages of combining electrospinning with MOF precursors in the design of oxygen electrocatalysts. It also investigates the morphological regulation of various fiber structures, including porous, hollow, core-shell, and beaded structures, as well as their influence on the catalytic performance. Finally, the performance enhancement strategies of electrospun-MOF catalyst materials are examined, and the development prospects along with future research directions related to oxygen electrocatalysts based on electrospun nanofibers are emphasized. This thorough review aims to offer meaningful insights and practical guidance for advancing the understanding, design, and fabrication of next-generation devices for energy conversion and storage.

Key words: Zinc-air battery, Oxygen reduction reaction, Oxygen evolution reaction, Electrospinning, Metal-organic frameworks, Nanofibers