Chinese Journal of Catalysis ›› 2015, Vol. 36 ›› Issue (2): 237-243.DOI: 10.1016/S1872-2067(14)60219-9
• Articles • Previous Articles Next Articles
Xingquan Xiong, Chao Yi, Qian Han, Lin Shi, Sizhong Li
Received:
2014-06-19
Revised:
2014-08-29
Online:
2015-01-21
Published:
2015-01-21
Supported by:
This work was supported by the National Natural Science Foundation of China (21004024), the Natural Science Foundation of Fujian Province (2011J01046), the Program for New Century Excellent Talents in University of Fujian Province (2012FJ-NCET-ZR03), the Promotion Program for Young and Middle-Aged Teachers in Science and Technology Research of Huaqiao University (ZQN-YX103), and the Special Foundation for Young Scientists of Fujian Province (2011J05131).
Xingquan Xiong, Chao Yi, Qian Han, Lin Shi, Sizhong Li. I2/ionic liquid as a highly efficient catalyst for per-O-acetylation of sugar under microwave irradiation[J]. Chinese Journal of Catalysis, 2015, 36(2): 237-243.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(14)60219-9
[1] Collins P C, Ferrier R J. Monosaccharides: Their Chemistry and Their Roles in Natural Products. New York: John Wiley & Sons, 1995. 360 [2] Garegg P J. Acc Chem Res, 1992, 25: 575 [3] Kunz H. Angew Chem Int Ed, 1987, 26: 294 [4] Dwek R A. Chem Rev, 1996, 96: 683 [5] Nicolaou K C, Mitchell H J. Angew Chem Int Ed, 2001, 40: 1576 [6] Davis B G. Chem Rev, 2002, 102: 579 [7] Toshima K, Tatsuta K. Chem Rev, 1993, 93: 1503 [8] Ye X S, Wong C H. J Org Chem, 2000, 65: 2410 [9] Li B, Zeng Y, Hauser S, Song H J, Wang L X. J Am Chem Soc, 2005, 127: 9692 [10] Wang Q B, Fu J, Zhang J B. Carbohydr Res, 2008, 343: 2989 [11] Wolfrom M L, Thompson A. In: Whistler R L, Wolfrom M L, BeMiller J N, eds. Methods in Carbohydrate Chemistry. Vol. 2. New York: Academic Press, 1963. 211 [12] Cohen R B, Tsou K C, Rutenburg S H, Seligman A M. J Biol Chem, 1952, 195: 239 [13] Hyatt J A, Tindall G W. Heterocycles, 1993, 35: 227 [14] Vogel A I. Vogel's Textbook of Practical Organic Chemistry. 5th Ed. New York: Wiley, 1989. 644 [15] Das S K, Reddy K A, Krovvidi V L N R, Mukkanti K. Carbohydr Res, 2005, 340: 1387 [16] Bizier N P, Atkins S R, Helland L C, Colvin S F, Twitchell J R, Cloninger M J. Carbohydr Res, 2008, 343: 1814 [17] Limousin C, Cleophax J, Petit A, Loupy A, Lukacs G. J Carbohydr Chem, 1997, 16: 327 [18] Shi L, Zhang G S, Pan F. Tetrahedron, 2008, 64: 2572 [19] Dasgupta F, Singh P P, Srivastava H C. Carbohydr Res, 1980, 80: 346 [20] Orita A, Tanahashi C, Kakuda A, Otera J. J Org Chem, 2001, 66: 8926 [21] Lee J C, Tai C A, Hung S C. Tetrahedron Lett, 2002, 43: 851 [22] Procopiou P A, Baugh S P D, Flack S S, Inglis G G A. J Org Chem, 1998, 63: 2342 [23] Tai C A, Kulkarni S S, Hung S C. J Org Chem, 2003, 68: 8719 [24] Bartoli G, Dalpozzo R, De Nino A, Maiuolo L, Nardi M, Procopio A, Tagarelli A. Green Chem, 2004, 6: 191 [25] Agnihotri G, Tiwari P, Misra A K. Carbohydr Res, 2005, 340: 1393 [26] Wu H, Shen Y, Fan L Y, Wan Y, Shi D Q. Tetrahedron, 2006, 62: 7995 [27] Mukhopadhyay B, Russell D A, Field R A. Carbohydr Res, 2005, 340: 1075 [28] Misra A K, Tiwari P, Madhusudan S K. Carbohydr Res, 2005, 340: 325 [29] Wu L Q, Yin Z K. Carbohydr Res, 2013, 365: 14 [30] Zhang J B, Zhang B, Zhou J F, Li J, Shi C J, Huang T, Wang Z F, Tang J. J Carbohydr Chem, 2011, 30: 165 [31] Zhou Y, Yan P F, Li G M, Chen Z J. Chin J Org Chem (周颖, 闫鹏飞, 李光明, 陈正军. 有机化学), 2009, 29: 1719 [32] Kartha K P R, Field R A. Tetrahedron, 1997, 53: 11753 [33] Mingos D M P, Whittaker A G. In: van Eldik R, Hubbard C D, eds. Microwave Dielectric Heating Effects in Chemical Synthesis in Chemistry under Extreme or Nonclassical Conditions. New York: John Wiley & Sons, 1997. 479 [34] Loupy A. Microwaves in Organic Synthesis. Weinheim: Wiley-VCH, 2002 [35] Hayes B L. Microwave Synthesis: Chemistry at the Speed of Light. Matthews, NC: CEM Publishing, 2002 [36] Varma R S. Microwave Technology—Chemical Synthesis Applications: Kirk-Othmer Encyclopedia of Chemical Technology. New York: John Wiley & Sons, 2003 [37] Lidstrom P, Tierney J, Wathey B, Westman J. Tetrahedron, 2001, 57: 9225 [38] De la Hoz A, Díaz-Ortiz Á, Moreno A. Chem Soc Rev, 2005, 34: 164 [39] Xiong X Q, Cai L, Tang Z K. Chin J Org Chem (熊兴泉, 蔡雷, 唐忠科. 有机化学), 2012, 32: 1410 [40] Xiong X Q, Cai L. Catal Sci Technol, 2013, 3: 1301 [41] Xiong X Q, Chen H X, Tang Z K, Jiang Y B. RSC Adv, 2014, 4: 9830 [42] Xiong X Q, Cai L, Jiang Y B, Han Q. ACS Sustainable Chem Eng, 2014, 2: 765 [43] Xiong X Q, Chen H X, Zhu R J. Catal Commun, 2014, 54: 94 |
[1] | Ernest Pahuyo Delmo, Yian Wang, Jing Wang, Shangqian Zhu, Tiehuai Li, Xueping Qin, Yibo Tian, Qinglan Zhao, Juhee Jang, Yinuo Wang, Meng Gu, Lili Zhang, Minhua Shao. Metal organic framework-ionic liquid hybrid catalysts for the selective electrochemical reduction of CO2 to CH4 [J]. Chinese Journal of Catalysis, 2022, 43(7): 1687-1696. |
[2] | Zixun Yu, Chang Liu, Yeyu Deng, Mohan Li, Fangxin She, Leo Lai, Yuan Chen, Li Wei. Interfacial engineering of heterogeneous molecular electrocatalysts using ionic liquids towards efficient hydrogen peroxide production [J]. Chinese Journal of Catalysis, 2022, 43(5): 1238-1246. |
[3] | Yiqi Ren, Lin Tao, Chunzhi Li, Sanjeevi Jayakumar, He Li, Qihua Yang. Development of efficient solid chiral catalysts with designable linkage for asymmetric transfer hydrogenation of quinoline derivatives [J]. Chinese Journal of Catalysis, 2021, 42(9): 1576-1585. |
[4] | Bihua Chen, Tong Ding, Xi Deng, Xin Wang, Dawei Zhang, Sanguan Ma, Yongya Zhang, Bing Ni, Guohua Gao. Honeycomb-structured solid acid catalysts fabricated via the swelling-induced self-assembly of acidic poly(ionic liquid)s for highly efficient hydrolysis reactions [J]. Chinese Journal of Catalysis, 2021, 42(2): 297-309. |
[5] | Jia Zhao, Saisai Wang, Bolin Wang, Yuxue Yue, Chunxiao Jin, Jinyue Lu, Zheng Fang, Xiangxue Pang, Feng Feng, Lingling Guo, Zhiyan Pan, Xiaonian Li. Acetylene hydrochlorination over supported ionic liquid phase (SILP) gold-based catalyst: Stabilization of cationic Au species via chemical activation of hydrogen chloride and corresponding mechanisms [J]. Chinese Journal of Catalysis, 2021, 42(2): 334-346. |
[6] | Kai Li, Mengxia Ji, Rong Chen, Qi Jiang, Jiexiang Xia, Huaming Li. Construction of nitrogen and phosphorus co-doped graphene quantum dots/Bi5O7I composites for accelerated charge separation and enhanced photocatalytic degradation performance [J]. Chinese Journal of Catalysis, 2020, 41(8): 1230-1239. |
[7] | Guangfan Zheng, Jiaqiong Sun, Youwei Xu, Xukai Zhou, Hui Gao, Xingwei Li. Rhodium(III)-catalyzed chelation-assisted C-H imidation of arenes via umpolung of the imidating reagent [J]. Chinese Journal of Catalysis, 2020, 41(11): 1723-1733. |
[8] | Shengyao Wang, Zhongliang Xiong, Nan Yang, Xing Ding, Hao Chen. Iodine-doping-assisted tunable introduction of oxygen vacancies on bismuth tungstate photocatalysts for highly efficient molecular oxygen activation and pentachlorophenol mineralization [J]. Chinese Journal of Catalysis, 2020, 41(10): 1544-1553. |
[9] | Minghao Li, Fengtian Wu, Yanlong Gu. Brönsted acidic ionic liquid catalyzed synthesis of benzo[a]carbazole from renewable acetol and 2-phenylindoles in a biphasic system [J]. Chinese Journal of Catalysis, 2019, 40(8): 1135-1140. |
[10] | Hanxiang Chen, Jie Zeng, Mindong Chen, Zhigang Chen, Mengxia Ji, Junze Zhao, Jiexiang Xia, Huaming Li. Improved visible light photocatalytic activity of mesoporous FeVO4 nanorods synthesized using a reactable ionic liquid [J]. Chinese Journal of Catalysis, 2019, 40(5): 744-754. |
[11] | Guoqin Wang, Heyuan Song, Ruiyun Li, Zhen Li, Jing Chen. Olefin oligomerization via new and efficient Brönsted acidic ionic liquid catalyst systems [J]. Chinese Journal of Catalysis, 2018, 39(6): 1110-1120. |
[12] | Henan Li, Yanan Xu, Hansinee Sitinamaluwa, Kimal Wasalathilake, Dilini Galpaya, Cheng Yan. Cu nanoparticles supported on graphitic carbon nitride as an efficient electrocatalyst for oxygen reduction reaction [J]. Chinese Journal of Catalysis, 2017, 38(6): 1006-1010. |
[13] | Wei Zhang, Feng Han, Jin Tong, Chungu Xia, Jianhua Liu. Cobalt carbonyl ionic liquids based on the 1,1,3,3-tetra-alkylguanidine cation: Novel, highly efficient, and reusable catalysts for the carbonylation of epoxides [J]. Chinese Journal of Catalysis, 2017, 38(5): 805-812. |
[14] | Heyuan Song, Meirong Kang, Fuxiang Jin, Guoqin Wang, Zhen Li, Jing Chen. Brønsted-acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dialkyl ethers [J]. Chinese Journal of Catalysis, 2017, 38(5): 853-861. |
[15] | Cong Zhao, Shengxin Chen, Ruirui Zhang, Zihang Li, Ruixia Liu, Baozeng Ren, Suojiang Zhang. Synthesis of propylene glycol ethers from propylene oxide catalyzed by environmentally friendly ionic liquids [J]. Chinese Journal of Catalysis, 2017, 38(5): 879-889. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||