催化学报 ›› 2020, Vol. 41 ›› Issue (11): 1706-1714.DOI: 10.1016/S1872-2067(20)63574-4

• 论文 • 上一篇    下一篇

高暴露{111}晶面Ag2-xO用于高效电化学析氧反应及其活性和机理

张晓枫, 李健生, 由万胜, 朱再明   

  1. 辽宁师范大学化学化工学院, 辽宁大连 116029
  • 收稿日期:2020-02-12 修回日期:2020-03-24 出版日期:2020-11-18 发布日期:2020-08-15
  • 通讯作者: 李健生, 由万胜
  • 基金资助:
    国家自然科学基金(21573099,21601077);多酸科学教育部重点实验室开放项目.

Ag2-xO with highly exposed {111} crystal facets for efficient electrochemical oxygen evolution: Activity and mechanism

Xiao-Feng Zhang, Jian-Sheng Li, Wan-Sheng You, Zai-Ming Zhu   

  1. School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning, China
  • Received:2020-02-12 Revised:2020-03-24 Online:2020-11-18 Published:2020-08-15
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (21573099 and 21601077), and the Opening Project of Key Laboratory of Polyoxometalate Science of Ministry of Education.

摘要: 析氧反应(OER)是工业上制约水裂解制氢和CO2综合利用的瓶颈,涉及四电子、四质子耦合以及O-O键的形成,是一个复杂的、高活化能(高过电位)的动力学过程.模拟自然界光系统PS II,发展高效、稳定、经济的析氧催化剂(OEC)是一个具有挑战性的研究课题.Ag基催化剂因具有以下优势而成为候选:(1)Ag与Ru同属第五周期性质相近,且有经济性且储量丰富;(2)Ag比第三周期过渡金属具有更高的电子密度和更多可调节配位数;(3)Ag存在I,II,III多种氧化态.本课题组前期工作证明,Ag基配合物[H3AgI(H2O)PW11O39]3-在酸性水溶液体系中能够形成高氧化态AgII和AgIII配合物,用于OER时展现出高活性和稳定性.受此启发,我们选择简单银基氧化物用于研究电催化OER活性并探究其催化机理.
本文通过恒电流沉积法在含有Ag+离子的0.1 M K2B4O7电解质溶液中设计合成了系列Ag2-xO/FTO-ii=0.5,1,2,3,4,7mA cm-2)电极,并通过XRD,SEM和TEM方法对其组成和形貌进行了表征.XRD结果表明,电极膜由Ag2O组成,随着沉积电流密度增加,其{111}晶面衍射峰向高角度移动,推测是由部分Ag+离子氧化成Ag2+离子所致.SEM显示,Ag2-xO/FTO-1电极膜上Ag2-xO主体呈现三角薄片状,拥有比其它电极Ag2-xO/FTO-ii=0.5,2,3,4,7)暴露更多的{111}晶面.同时,高倍TEM显示晶面间距为0.267nm,进一步证明存在较多暴露{111}晶面.线性扫描伏安曲线(LSV)显示,Ag2-xO/FTO-1电极具有最高的OER电流密度,通过对Tafel区域进行拟合,得到Tafel方程η=0.37+0.047 log|j|,计算得出在10 mA cm-2电流密度下Ag2-xO/FTO-1电极具有较低的Tafel斜率47mV dec-1和过电位417mV vs.RHE,可用作高效的OEC.电化学阻抗谱(EIS)表明,相比其它电极,Ag2-xO/FTO-1具有最佳的电荷转移能力.电流-时间(I-t)曲线显示10 h内其电流密度仅下降4%,表明电极稳定性良好.通过XPS和拉曼光谱发现,Ag2-xO/FTO-1经过循环伏安(CV)测试后存在O-O键,说明Ag2-xO电催化OER过程中形成了过氧物种.XPS进一步显示催化反应前后Ag+和Ag2+峰面积比由1.46降至0.65,说明反应后Ag2+含量显著增加.通过对Ag2-xO/FTO-1电极电催化OER机理的研究,我们推测其具有优异活性的原因是Ag2-xO表面更高暴露{111}晶面有利于Ag+/Ag2+吸附OH-和H2O,相邻的吸附氧原子在脱去H+的同时,氧原子上活性电子易于转移给Ag2+形成O-O键和Ag+.电极上Ag+进一步被氧化生成Ag2+,Ag2+将过氧物种氧化,放出O2,完成催化剂的循环再利用.

关键词: 氧化银, 晶面, 二价银离子, 电催化, 水氧化, 析氧反应

Abstract: A series of Ag2-xO/FTO-i electrodes (where i denotes the current density during the electrodeposition, and i=0.5, 1, 2, 3, 4, or 7) was fabricated in 0.1 M K2B4O7 electrolyte containing Ag+ ions by galvanostatic electrocrystallization. The electrode composition and morphology were characterized using X-ray powder diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. The results reveal that the electrode films consist of Ag2O, but some of the Ag+ ions on the {111} crystal facets are oxidized into Ag2+ ions. Furthermore, the Ag2-xO/FTO-1 electrode shows a triangular slice shape of a parallel matrix with a larger exposed area of {111} crystal facets than other Ag2-xO/FTO-i (i=0.5, 2, 3, 4, or 7) electrodes. Electrocatalytic experiments prove that the Ag2-xO/FTO-1 electrode produces the highest oxidative current density, has an overpotential of 417 mV at 10 mA cm-2, and has a Tafel slope of 47 mV dec-1 in 0.1 M K2B4O7. Electrochemical impedance spectra indicate that Ag2-xO/FTO-1 electrodes have the best ability for charge transfer. In addition, in the I-t test over 10 h, the current density decreased 4%. Fortunately, both O-O and Ag2+ species were detected after electrocatalysis and a possible mechanism for the oxygen evolution reaction is proposed in which the formation of Ag2+ and O-O species on {111} facets plays a critical role.

Key words: Ag2O, Crystal facet, Ag2+ ions, Electrocatalysis, Water oxidation, Oxygen evolution reaction