催化学报 ›› 2025, Vol. 77: 4-19.DOI: 10.1016/S1872-2067(25)64783-8

• 综述 • 上一篇    下一篇

超薄二维电催化剂: 构效关系、催化机制及水电解槽应用

王立娜a, 纳木汗a, 杜若菲a, 王秀锦a, 于博洋a, 杨岚b, 陈辉a,*(), 邹晓新a,*()   

  1. a吉林大学化学学院, 无机合成与制备化学全国重点实验室, 吉林长春 130012
    b北京智慧能源研究院, 北京 102209
  • 收稿日期:2025-05-15 接受日期:2025-06-30 出版日期:2025-10-18 发布日期:2025-10-05
  • 通讯作者: *电子信箱: xxzou@jlu.edu.cn (邹晓新),chenhui@jlu.edu.cn (陈辉).
  • 基金资助:
    国家电网总部科技项目(5419-202320652A-3-2-ZN)

Ultrathin two-dimensional electrocatalysts: Structure-property relationships, mechanistic insights, and applications in water electrolysis

Lina Wanga, Muhan Naa, Ruofei Dua, Xiujin Wanga, Boyang Yua, Lan Yangb, Hui Chena,*(), Xiaoxin Zoua,*()   

  1. aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
    bBeijing Institute of Smart Energy, Beijing 102209, China
  • Received:2025-05-15 Accepted:2025-06-30 Online:2025-10-18 Published:2025-10-05
  • Contact: *xxzou@jlu.edu.cn (X. Zou), chenhui@jlu.edu.cn (H. Chen).
  • About author:Hui Chen has received his Ph.D. in materials science from Jilin University (China) in June 2018, and completed his postdoctoral training at College of Chemistry, Jilin University from June 2018 to November 2022. He is currently a professor at the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry in Jilin University. His research interests are in catalytic materials for water electrolysis technologies, including alkaline water electrolyzer (AWE) and proton exchange membrane water electrolyzer (PEMWE). Some of his recent progresses include (i) the development of low‐iridium oxygen‐evolution catalysts and anode catalyst layers for PEMWEs, and (ii) the large‐area synthesis of highly active and stable nickel-based electrodes for AWEs. He has authored 40+ peer-reviewed papers and 10 patents.
    Xiaoxin Zou (State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University) has received his PhD in inorganic chemistry from Jilin University in June 2011, and then moved to the University of California, Riverside, and Rutgers, The State University of New Jersey, as a postdoctoral scholar from July 2011 to October 2013. He is currently a professor at the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry in Jilin University. His research interests are in hydrogen energy materials chemistry, comprising the elucidation of the atomic basis for water splitting electrocatalysts, prediction and searching of efficient catalysts with novel crystal structures and preparative technology of industrial water splitting catalysts.
  • Supported by:
    State Grid Headquarter Science and Technology project(5419-202320652A-3-2-ZN)

摘要:

氢能作为零碳能源载体, 在推动工业减排与可再生能源高效利用方面具有重要战略意义. 水电解技术作为绿氢制备的核心路径, 是实现规模化清洁氢能生产的关键技术. 然而, 其阴阳极半反应(HER/OER)受制于缓慢的动力学过程与高过电势瓶颈, 特别是OER, 因涉及多步质子耦合电子转移过程而呈现显著动力学壁垒. 虽然贵金属催化剂(如Pt和IrO2)展现出了优异的本征催化活性, 但其高昂成本与资源稀缺性严重制约了其规模化应用. 因此, 开发地球丰度高、性能优异、稳定性强的电催化替代材料成为该领域的核心课题. 近年来, 具有原子级厚度和可工程化表面结构的超薄二维材料在水裂解领域快速崛起, 成为突破催化性能瓶颈、实现性能跃迁的重要研究方向.

本综述聚焦于水电解体系中超薄二维电催化材料的最新研究进展, 系统阐述其结构类型、合成策略、催化机制及器件集成等关键科学问题. 首先概述了主流二维材料体系, 包括过渡金属硫属化合物、层状双金属氢氧化物、金属氧化物等, 重点介绍了它们的结构特点及主流合成路径. 在材料设计层面, 二维材料由于高比表面积及丰富的表面原子位点, 有效提高了材料的单位质量比活性; 二维层状结构与可调控的表面官能团有助于优化电子/质子输运路径, 并调节关键反应中间体的吸附行为, 为构建高效催化界面提供了独特平台. 此外, 通过缺陷引入、异质元素掺杂及相工程等手段, 可精细调变其局部电子结构与几何构型, 从而实现对构效关系的精准调控. 在催化机制分析方面, 文章深入探讨了二维材料中关键结构因子(如晶格应变、不饱和配位环境和边缘活性位点)对反应路径与吸附行为的调控作用. 通过引入原位光谱及密度泛函理论计算, 揭示了催化活性中心的结构演化过程以及影响关键中间体吸附能和反应能垒的微观机制, 为构建结构-性能关联模型提供了坚实基础. 在电解槽应用层面, 二维电催化材料仍面临诸多工程化挑战, 包括层间堆叠/团聚倾向强、力学强度较低、与导电集流体间存在较大界面接触阻抗等. 本文系统梳理了二维材料在催化层结构优化、界面耦合、长周期运行稳定性等方面的最新研究成果, 并评估了其在酸性/碱性电解槽中应用的适配性与长期耐久性表现.

展望未来, 发展多尺度协同的研究策略以实现二维材料从结构设计、机理认知到器件集成的系统优化, 将成为推动其产业化应用的关键路径. 本工作在全面梳理二维电催化材料研究脉络的基础上, 进一步提出了统一整合材料设计、机理解析与器件集成的研究路径, 对未来绿色氢能技术中的高性能电催化剂开发具有重要指导意义.

关键词: 二维材料, 水裂解反应, 电催化, 催化机理, 电解槽

Abstract:

The pursuit of sustainable hydrogen production has positioned water electrolysis as a cornerstone technology for global carbon neutrality. However, sluggish kinetics, catalyst scarcity, and system integration challenges hinder its widespread deployment. Ultrathin two-dimensional (2D) materials, with their atomically exposed surfaces, tunable electronic structures, and defect-engineering capabilities, present unique opportunities for next-generation electrocatalysts. This review provides an integrated overview of ultrathin 2D electrocatalysts, discussing their structural diversity, synthetic routes, structure-activity relationships, and mechanistic understanding in water electrolysis processes. Special focus is placed on the translation of 2D materials from laboratory research to practical device implementation, emphasizing challenges such as scalable fabrication, interfacial engineering, and operational durability in realistic electrolyzer environments. The role of advanced characterization techniques in capturing dynamic structural changes and active site evolution is discussed. Finally, we outline future research directions, emphasizing the synergy of machine learning-driven materials discovery, advanced operando characterization, and scalable system integration to accelerate the industrial translation of 2D electrocatalysts for green hydrogen production.

Key words: Two-dimensional material, Water splitting reaction, Electrocatalysis, Catalytic mechanism, Electrolyzer