催化学报 ›› 2025, Vol. 77: 4-19.DOI: 10.1016/S1872-2067(25)64783-8
王立娜a, 纳木汗a, 杜若菲a, 王秀锦a, 于博洋a, 杨岚b, 陈辉a,*(), 邹晓新a,*(
)
收稿日期:
2025-05-15
接受日期:
2025-06-30
出版日期:
2025-10-18
发布日期:
2025-10-05
通讯作者:
*电子信箱: xxzou@jlu.edu.cn (邹晓新),chenhui@jlu.edu.cn (陈辉).
基金资助:
Lina Wanga, Muhan Naa, Ruofei Dua, Xiujin Wanga, Boyang Yua, Lan Yangb, Hui Chena,*(), Xiaoxin Zoua,*(
)
Received:
2025-05-15
Accepted:
2025-06-30
Online:
2025-10-18
Published:
2025-10-05
Contact:
*xxzou@jlu.edu.cn (X. Zou), chenhui@jlu.edu.cn (H. Chen).
About author:
Hui Chen has received his Ph.D. in materials science from Jilin University (China) in June 2018, and completed his postdoctoral training at College of Chemistry, Jilin University from June 2018 to November 2022. He is currently a professor at the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry in Jilin University. His research interests are in catalytic materials for water electrolysis technologies, including alkaline water electrolyzer (AWE) and proton exchange membrane water electrolyzer (PEMWE). Some of his recent progresses include (i) the development of low‐iridium oxygen‐evolution catalysts and anode catalyst layers for PEMWEs, and (ii) the large‐area synthesis of highly active and stable nickel-based electrodes for AWEs. He has authored 40+ peer-reviewed papers and 10 patents.Supported by:
摘要:
氢能作为零碳能源载体, 在推动工业减排与可再生能源高效利用方面具有重要战略意义. 水电解技术作为绿氢制备的核心路径, 是实现规模化清洁氢能生产的关键技术. 然而, 其阴阳极半反应(HER/OER)受制于缓慢的动力学过程与高过电势瓶颈, 特别是OER, 因涉及多步质子耦合电子转移过程而呈现显著动力学壁垒. 虽然贵金属催化剂(如Pt和IrO2)展现出了优异的本征催化活性, 但其高昂成本与资源稀缺性严重制约了其规模化应用. 因此, 开发地球丰度高、性能优异、稳定性强的电催化替代材料成为该领域的核心课题. 近年来, 具有原子级厚度和可工程化表面结构的超薄二维材料在水裂解领域快速崛起, 成为突破催化性能瓶颈、实现性能跃迁的重要研究方向.
本综述聚焦于水电解体系中超薄二维电催化材料的最新研究进展, 系统阐述其结构类型、合成策略、催化机制及器件集成等关键科学问题. 首先概述了主流二维材料体系, 包括过渡金属硫属化合物、层状双金属氢氧化物、金属氧化物等, 重点介绍了它们的结构特点及主流合成路径. 在材料设计层面, 二维材料由于高比表面积及丰富的表面原子位点, 有效提高了材料的单位质量比活性; 二维层状结构与可调控的表面官能团有助于优化电子/质子输运路径, 并调节关键反应中间体的吸附行为, 为构建高效催化界面提供了独特平台. 此外, 通过缺陷引入、异质元素掺杂及相工程等手段, 可精细调变其局部电子结构与几何构型, 从而实现对构效关系的精准调控. 在催化机制分析方面, 文章深入探讨了二维材料中关键结构因子(如晶格应变、不饱和配位环境和边缘活性位点)对反应路径与吸附行为的调控作用. 通过引入原位光谱及密度泛函理论计算, 揭示了催化活性中心的结构演化过程以及影响关键中间体吸附能和反应能垒的微观机制, 为构建结构-性能关联模型提供了坚实基础. 在电解槽应用层面, 二维电催化材料仍面临诸多工程化挑战, 包括层间堆叠/团聚倾向强、力学强度较低、与导电集流体间存在较大界面接触阻抗等. 本文系统梳理了二维材料在催化层结构优化、界面耦合、长周期运行稳定性等方面的最新研究成果, 并评估了其在酸性/碱性电解槽中应用的适配性与长期耐久性表现.
展望未来, 发展多尺度协同的研究策略以实现二维材料从结构设计、机理认知到器件集成的系统优化, 将成为推动其产业化应用的关键路径. 本工作在全面梳理二维电催化材料研究脉络的基础上, 进一步提出了统一整合材料设计、机理解析与器件集成的研究路径, 对未来绿色氢能技术中的高性能电催化剂开发具有重要指导意义.
王立娜, 纳木汗, 杜若菲, 王秀锦, 于博洋, 杨岚, 陈辉, 邹晓新. 超薄二维电催化剂: 构效关系、催化机制及水电解槽应用[J]. 催化学报, 2025, 77: 4-19.
Lina Wang, Muhan Na, Ruofei Du, Xiujin Wang, Boyang Yu, Lan Yang, Hui Chen, Xiaoxin Zou. Ultrathin two-dimensional electrocatalysts: Structure-property relationships, mechanistic insights, and applications in water electrolysis[J]. Chinese Journal of Catalysis, 2025, 77: 4-19.
Fig. 1. Schematic diagrams of 2D metal oxides (e.g., Honeycomb oxides, ABO2-type oxides and RP pervoskite), LDHs and TMDs with 1T, 2H, and 3R crystal phases.
Fig. 3. Schematic illustration of active site modulation strategies for 2D electrocatalysts, including phase engineering, heteroatomic doping, defect engineering, morphological control and strain effect.
Fig. 4. (a) TEM images of Pt-MoS2. (b) HAADF-STEM images of Pt-MoS2, with the red circle represented single Pt atoms. (c) Theoretical volcano plot of HER activity for various metal-doped MoS2 systems. (a-c) Reprinted with permission from Ref. [104]. Copyright 2015, The Royal Society of Chemistry. (d) ACTEM image of MoS2 monolayer with different S-vacancies. (e) Schematic illustration of top and side views of MoS2 basal planes incorporating strained S-vacancies. (f) ?GH versus %x-strain for various %S-vacancy. (d-f) Reprinted with permission from Ref. [108]. Copyright 2016, Springer Nature.
Fig. 5. (a) Theoretical volcano plot delineating the OER activity of edge sites and in-plane sites in layered iridium oxides. (b) Schematic illustration of the synthesis of high porous layered IrOx. Reprinted with permission from Ref. [113]. Copyright 2024, Chinese Chemical Society. (c) Schematic illustration of the synthesis of multi-defect HxIrOy nanosheets. (d) HAADF-STEM image of multi-defect HxIrOy nanosheets. Reprinted with permission from Ref. [112]. Copyright 2025, Wiley-VCH. (e) SEM image of 3R-IrO2. The proton transportation pathway along (f) interlayers and (g) intralayers of 3R-IrO2. Reprinted with permission from Ref. [114]. Copyright 2021, Elsevier Inc.
Fig. 6. (a) Synthesis of CAPist-L1 catalyst and the corresponding cross-sectional SEM image. (b) Long-term durability of CAPist-L1, NiFe-LDH, CAPist-L1(H2O) and IrO2 evaluated at 1000?mA/cm-2. Reprinted with permission from Ref. [118]. Copyright 2024, Springer Nature. (c) Structure of (Ni, Fe)3S2/NFF and the schematic illustration of its dual role as both anode and cathode catalysts in an electrolyzer. (d) Optical photos of large-area NFF before and after the sulfuration treatment. e) SEM images of (Ni, Fe)3S2/NFF in different selected areas. Reprinted with permission from Ref. [119]. Copyright 2024, Wiley-VCH.
Fig. 7. (a) HAADF-STEM image and (b) the corresponding aberration-corrected aberration HAADF-STEM image for Re0.03Ir0.97O2. (c) The polarization curve of Re0.03Ir0.97O2-based PEM electrolyzer. Reprinted with permission from Ref. [122]. Copyright 2025, Wiley‐VCH. (d) Schematic illustration of multilevel structural optimization for H-IrOx FPs-based anodic catalyst layer. (e) The 3D model of porous H-IrOx FPs. (f) Relative contributions of ηKinetic, ηOhmic, and ηTransport for H-IrOx FPs-, H-IrOx SPs- and R-IrO2 NPs-based PEMWE. Reprinted with permission from Ref. [127]. Copyright 2024, Wiley‐VCH. (g) Schematic representation of low-ionomer-dependent anode catalyst layer based on ?-HxIrOy. (h) Nyquist plots of ?-HxIrOy at 98% RH under varying temperatures. (i) Cross-section SEM image and the corresponding elemental mapping of ?-HxIrOy catalyst layer. Reprinted with permission from Ref. [113]. Copyright 2025, Wiley-VCH.
|
[1] | 翁应龙, 张建平, 张坤, 路亦通, 黄婷婷, 康英博, 韩晓彤, 邱介山. 先进电催化功能碳基材料研究新进展[J]. 催化学报, 2025, 76(9): 10-36. |
[2] | 孙燕, 张蕾. 双功能核壳Cu2O@NiFe2O4 Z型纳米反应器光辅助电催化同步氧化-还原合成鸟粪石[J]. 催化学报, 2025, 76(9): 230-241. |
[3] | 朱鸿睿, 王希伦, 赵娟涓, 尹梦晗, 徐慧民, 李高仁. 基于Ni单原子/P,N掺杂非晶态NiFe2O4作为阳极和Ag@CuO/Cu2O纳米立方体作为阴极组成的高效光电化学系统用于微塑料氧化和二氧化碳还原[J]. 催化学报, 2025, 76(9): 159-172. |
[4] | 杨丹, 崔翔, 徐周, 颜前, 吴雅婷, 周春梅, 戴翼虎, 万晓月, 靳玉广, 杨艳辉. 配体保护的精确结构镍纳米团簇高效电催化甘油氧化制甲酸[J]. 催化学报, 2025, 76(9): 185-197. |
[5] | 李原锐, 张晓磊, 李彤, 胡程, 陈芳, 蔡豪, 黄洪伟. 少层氧空位Bi2O2(OH)NO3用于水和空气双通道压电催化产H2O2[J]. 催化学报, 2025, 75(8): 105-114. |
[6] | 张冰洁, 王春燕, 杨甫林, 王书莉, 冯立纲. 功函数差异自发诱导Ir/MoSe2内置电场催化高效PEM水电解[J]. 催化学报, 2025, 75(8): 95-104. |
[7] | 代继澳, 鲜靖林, 刘凯思, 吴植傲, 樊淼, 覃姝彤, 姜会钰, 徐卫林, 金桓宇, 万骏. 非常规亚稳态立方相二维LaMnO3用于高效碱性海水析氧反应[J]. 催化学报, 2025, 74(7): 228-239. |
[8] | 潘嘉宁, 李敏, 王瑛琦, 谢文富, 张天雨, 王强. 先进的光电催化耦合反应[J]. 催化学报, 2025, 73(6): 99-145. |
[9] | 陈洁, 李静, 魏子栋. 电催化乙二醇选择性氧化制备乙醇酸的最新进展[J]. 催化学报, 2025, 73(6): 79-98. |
[10] | 胡呈弘, 张悦, 张仪, 黄沁彤, 沈葵, 陈立宇, 李映伟. Sn电子调节器增强Fe位点电催化CO2还原性能[J]. 催化学报, 2025, 72(5): 222-229. |
[11] | 贾萁森, 王雅楠, 赵艳, 田圳铭, 任璐瑶, 崔学晶, 刘光波, 陈鑫, 李文震, 姜鲁华. 通过调节钛氧化物界面水结构驱动光电催化海水选择性氧化产氧[J]. 催化学报, 2025, 72(5): 154-163. |
[12] | 孙静涵, 许峥嵘, 刘邓, 孔爱国, 张其春, 刘睿. 簇状Bi28O32(SO4)10原位Bi晶格畸变增强电催化CO2还原为甲酸[J]. 催化学报, 2025, 72(5): 199-210. |
[13] | 张朋祥, 王佳雯, 杨天宇, 王瑞哲, 沈若凡, 彭智昆, 刘艳艳, 武现丽, 蒋剑春, 李保军. 揭示复杂性: 析氧反应机理研究进展[J]. 催化学报, 2025, 72(5): 48-83. |
[14] | 李思明, 孙恩样, 魏鹏飞, 赵微, 裴随珠, 陈颖, 杨洁, 陈绘丽, 尹熙, 王旻, 李亚伟. 浸渍离子液体于多孔Fe-N-C电催化剂以改善聚合物电解质燃料电池电极动力学与质量传输[J]. 催化学报, 2025, 72(5): 277-288. |
[15] | 黄渝, 邹磊, 黄远标, 曹荣. 光、电、光电催化甲烷转化至醇类物质[J]. 催化学报, 2025, 70(3): 207-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||