催化学报 ›› 2025, Vol. 71: 319-329.DOI: 10.1016/S1872-2067(24)60240-8

• 论文 • 上一篇    下一篇

ZnO/ZnS S型异质结光催化产H2O2/H2的稳定性恢复机制

胡金豆a,*,1(), 朱苗苗a,1, 扎希德·阿里·加齐b, 曹亚丽a,*()   

  1. a新疆大学化学学院碳基能源化学与利用国家重点实验室, 新疆乌鲁木齐 830017, 中国
    b白沙瓦大学国家物理化学卓越中心, 白沙瓦, 巴基斯坦
  • 收稿日期:2024-11-01 接受日期:2024-12-23 出版日期:2025-04-18 发布日期:2025-04-13
  • 通讯作者: * 电子信箱: caoyali523@163.com (曹亚丽), hujindu@xju.edu.cn (胡金豆).
  • 作者简介:

    1共同第一作者.

  • 基金资助:
    上海合作组织科技伙伴计划及国际科技合作计划项目(2022E01059);自治区高校基本科研业务费项目(XJEDU2024P014);新疆天池博士计划(TCBS202018);新疆大学博士科研启动基金(BS200250)

Restoration mechanism of photocatalytic H2O2/H2 production stability of ZnO/ZnS S-scheme heterojunction

Jindou Hua,*,1(), Miaomiao Zhua,1, Zahid Ali Ghazib, Yali Caoa,*()   

  1. aState Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, China
    bNational Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
  • Received:2024-11-01 Accepted:2024-12-23 Online:2025-04-18 Published:2025-04-13
  • Contact: * E-mail: caoyali523@163.com (Y. Cao), hujindu@xju.edu.cn (J. Hu).
  • About author:

    1Contributed equally this work.

  • Supported by:
    Shanghai Cooperation Organization Science and Technology Partnership Program and International Science and Technology Cooperation Program(2022E01059);Scientific Research Program of Higher Education Institution of Xinjiang(XJEDU2024P014);Xinjiang Tianchi Doctoral Project(TCBS202018);Xinjiang University Doctoral Research Foundation(BS200250)

摘要:

H2O2作为最重要的100种化学品之一, 因其活性氧含量高(47 wt%)、反应副产物只有水和氧气的优点, 被认为是一种理想的环境友好型强氧化剂. 然而, 工业生产H2O2的主要方法是蒽醌氧化法, 使用该工艺生产的H2O2占全球总产量的95%以上. 但是, 该方法能耗高, 并且生产过程中会产生大量废水、废气和固体废物, 不符合绿色化学和低碳排放的原则. 因此, 亟需一种新的经济高效且绿色环保的H2O2生产工艺. 利用半导体光催化剂催化还原氧气生产H2O2就被认为是一种理想的生产方法, 该方法仅需要水、氧气作为原料, 且生产过程中没有任何污染性的副产物生成. 因此, 通过半导体催化剂生产过氧化氢是一种清洁高效的方法.
本文采用原位氧化法合成了同源S型异质结结构. 通过X射线衍射(XRD)、扫描电镜、透射电镜以及X射线光电子能谱等系列表征证明了催化剂的成功合成. 对所得异质结材料进行光催化性能测试, 在300瓦氙灯照射下, 最优光催化剂ZS-5(在马弗炉的煅烧温度为500 °C)的光催化过氧化氢的产量约为517.32 µmol g-1, 其性能优于大部分已报道的产H2O2光催化剂. 此外, 该催化剂还具有较好的产氢性能, 光照5 h后的产氢量约为140.45 mmol g-1. 在该体系中, ZnO与ZnS形成的S型异质结界面提高了载流子分离效率, 改善了光吸收能力, 增强了光催化系统的氧化还原能力. 此外, 理论计算、光辅助开尔文探针力显微镜和电子顺磁共振共同揭示了S型电荷迁移机理. 在光照条件下, ZnO中具有较弱还原能力的低导带电子可以与ZnS中具有较弱氧化能力的高价带空穴在异质结界面处直接复合. 同时, ZnS中具有较高还原能力的导带电子和ZnO中具有较高氧化能力的价带空穴将得以保留, 分别参与还原反应(光催化制氢)和氧化反应(光催化生成H2O2). 除光催化活性外, 光催化材料的稳定性也尤为重要, 本文通过XRD与光催化析氢循环实验证明了二次煅烧可使其光催化析氢性能恢复至初始状态.
综上所述, 该体系光催化产H2O2和产氢性能的提升可归因于ZnO与ZnS之间S型异质结的形成. 本文为设计和构建具有优异光催化稳定性的硫化物光催化剂提供了新的思路.

关键词: 原位, 异质结, 过氧化氢, 制氢

Abstract:

Sulfide photocatalysts are one of the widely recognized excellent photocatalysts. However, the stability of sulfide photocatalysts has always been a challenging problem in the field of photocatalysis. Herein, an in-situ oxidation strategy was designed to construct ZnO/ZnS homologous S-scheme catalysts and solve its poor stability problem. The results indicates that the obtained ZnO/ZnS homologous heterojunction not only has dual-function performance, but also has good recover ability in photocatalytic performance: the photocatalytic H2O2 yield can reach 517.32 μmol g-1 (in pure water) after two hours, the photocatalytic H2 yield is 140.45 mmol g-1 in 5 h, which were 2.2 times and 84 times than that of the ZnS, respectively. Excitingly, the recovery rate of photocatalytic performance can be increased from 33.3% to 97.2%. The excellent photocatalytic performance is attributed to that the obtained homologous heterojunction can not only broaden the light absorption capacity (370-600 nm), but also facilitate the separation and transfer of photogenerated electrons. The high recovery rate of photocatalytic stability is due to the re-generation of zinc oxide in the oxidation process, which makes the photocatalyst return to the original homologous heterojunction structure. Meanwhile, experimental results, density functional theory calculations and Kelvin probe force microscopy indicate that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism. This work provides new ideas and breakthroughs for the design and construction of sulfide photocatalysts with excellent photocatalytic stability.

Key words: In-situ, Heterojunction, Hydrogen peroxide, Hydrogen production