催化学报 ›› 2025, Vol. 75: 147-163.DOI: 10.1016/S1872-2067(25)64723-1

• 论文 • 上一篇    下一篇

基于S型Mn0.5Cd0.5S/In2S3异质结光催化剂的新兴污染物消除系统评估: 降解路径、毒性评价及机理分析

艾亚婷a, 熊贤强a,*(), 朱华跃c,*(), 王齐d,*(), 翁波e,f,*(), 杨民权g   

  1. a台州学院医药化工学院, 浙江椒江 318000, 中国
    b南葡萄牙里斯本新奥大学新奥科技学院化学系, 卡帕里卡, 葡萄牙
    c台州学院生命学院, 浙江台州 318000, 中国
    d浙江工商大学, 浙江杭州 310018, 中国
    e中国科学院城市环境研究所, 福建厦门 361021, 中国
    f中国科学院大学, 北京 100049, 中国
    g福建师范大学, 福建福州 350007, 中国
  • 收稿日期:2025-02-12 接受日期:2025-03-15 出版日期:2025-08-18 发布日期:2025-07-22
  • 通讯作者: *电子信箱: 11337061@zju.edu.cn (熊贤强), zhuhuayue@126.com (朱华跃), wangqi8327@zjgsu.edu.cn (王齐), bweng@iue.ac.cn (翁波).
  • 基金资助:
    2025年度“尖兵领雁+X”科技计划(2025C02218)

Systematic assessment of emerging contaminants elimination using an S-scheme Mn0.5Cd0.5S/In2S3 photocatalyst: Degradation pathways, toxicity evaluation and mechanistic analysis

Ai Yatinga, A. C. Carabineiro Sóniab, Xiong Xianqianga,*(), Zhu Huayuec,*(), Wang Qid,*(), Weng Boe,f,*(), Yang Min-Quang   

  1. aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
    bLAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
    cInstitute of Environmental Engineering Technology, Taizhou University, Taizhou 318000, Zhejiang, China
    dZhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
    eState Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China
    fUniversity of Chinese Academy of Sciences, Beijing 100049, China
    gCollege of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian, China
  • Received:2025-02-12 Accepted:2025-03-15 Online:2025-08-18 Published:2025-07-22
  • Contact: *E-mail: 11337061@zju.edu.cn (X. Xiong), zhuhuayue@126.com (H. Zhu), wangqi8327@zjgsu.edu.cn (Q. Wang), bweng@iue.ac.cn (B. Weng).
  • Supported by:
    “Lingyan” R&D Plan Project of Zhejiang Province(2025C02218)

摘要:

随着工业化和城市化的快速发展, 水源中的新兴污染物(如抗生素)对生态环境和人类健康构成了严重威胁, 亟需开发高效、可靠的水处理技术. 光催化高级氧化技术(AOPs)因其反应速率快、氧化能力强且环境友好, 被认为是解决该问题的有效手段. 然而, 现有研究在废水处理的综合评估方面仍存在不足, 特别是在降解路径、毒性评估及反应机理的深入解析方面亟待加强.

本文设计并制备了一种新型的S型异质结光催化剂Mn0.5Cd0.5S/In2S3 (MCS/IS), 用于高效降解抗生素污染物, 重点考察了其对盐酸四环素(TCH)的去除效果. 实验结果表明, 优化的MCS/IS光催化剂在可见光下表现出卓越的光催化活性, 对TCH的降解率显著提升, 并展现出优异的抗无机阴离子干扰能力. 此外, 基于MCS/IS膜的连续流废水处理系统在长期运行中表现出出色的稳定性, 为实际废水处理提供了可行的技术方案. 通过响应面方法和Fukui函数分析, 系统研究了催化剂用量、水体类型和污染物种类等反应条件对光催化降解速率的影响, 并揭示了TCH降解的主要路径及关键中间产物. 毒性评估结果表明, 经过MCS/IS光催化处理后的出水对环境安全无显著生态毒性. 进一步的机理研究表明, MCS/IS光催化剂中的S型异质结结构有效促进了光生电子-空穴对的分离, 同时保留了强氧化性空穴和高还原性电子, 从而显著提升了光催化性能.

综上, 本研究不仅为高效光催化剂的设计与合成提供了新思路, 还通过系统的降解路径解析、毒性评估及机理研究, 为光催化技术在环境治理中的应用奠定了坚实的科学基础.

关键词: S型异质结, Mn0.5Cd0.5S/In2S3, 抗生素降解, 生物毒性, 反应机理

Abstract:

Emerging contaminants in water sources present serious environmental and health risks, creating an urgent need for efficient and reliable treatment strategies. Photocatalytic advanced oxidation processes (AOPs) provide rapid reaction rates and strong oxidation capabilities, however, comprehensive evaluations of wastewater treatment, including degradation pathways, toxicity assessments and mechanistic insights, remain underexplored in the literature. This study presents novel S-scheme Mn0.5Cd0.5S/In2S3 (MCS/IS) photocatalysts for efficient degradation of antibiotic pollutants, with a particular focus on tetracycline hydrochloride (TCH). The optimized MCS/IS photocatalyst demonstrates exceptional degradation efficiency and robust resistance to inorganic anions. Additionally, a continuous-flow wastewater treatment system, using an MCS/IS membrane, demonstrates outstanding stability in TCH photodegradation. Utilizing response surface methodology and Fukui function analysis, the effects of various parameters on photocatalytic degradation rates, along with the associated pathways and intermediate products, have been thoroughly investigated. Toxicity assessments confirm the environmental safety of the treated effluents. Mechanistic studies show that the S-scheme heterojunction in the MCS/IS photocatalyst improves electron-hole separation, thereby enhancing photocatalytic performance. It is expected that this study will serve as a model for advancing the removal of emerging contaminants, further enhancing photocatalytic AOPs as sustainable water purification technologies.

Key words: S-scheme heterojunction, Mn0.5Cd0.5S/In2S3, Antibiotic degradation, Biotoxicity, Reaction mechanism