催化学报 ›› 2025, Vol. 75: 164-179.DOI: 10.1016/S1872-2067(25)64756-5

• 论文 • 上一篇    下一篇

晶面诱导还原导向的AgBr/Ag0/TiO2{100} Z型异质结用于四环素去除

熊祺a,1, 史全全a,*,1(), 王彬力c, 李杲b,*()   

  1. a内蒙古农业大学理学院, 内蒙古呼和浩特 010018, 中国
    b中国科学院大连化学物理研究所, 辽宁大连 116023, 中国
    c中国科学院深圳先进技术研究院, 广东深圳 518055, 中国
    d苏黎世联邦理工学院化学与生物工程研究所, 苏黎世, 瑞士
  • 收稿日期:2025-03-14 接受日期:2025-05-26 出版日期:2025-08-18 发布日期:2025-07-22
  • 通讯作者: *电子信箱: qqshi@imau.edu.cn (史全全), gaoli@dicp.ac.cn (李杲).
  • 作者简介:1共同第一作者.
  • 基金资助:
    中央引导地方科技发展资金(2022ZY0081);国家自然科学基金(22065029)

Facet-induced reduction directed AgBr/Ag0/TiO2{100} Z-scheme heterojunction for tetracycline removal

Xiong Qia,1, Shi Quanquana,*,1(), Wang Binlic, Baiker Alfonsd, Li Gaob,*()   

  1. aCollege of Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
    bDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
    cShenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
    dInstitute for Chemical and Bioengineering, ETH Zurich, Hönggerberg, HCI, CH-8093 Zurich, Switzerland
  • Received:2025-03-14 Accepted:2025-05-26 Online:2025-08-18 Published:2025-07-22
  • Contact: *E-mail: qqshi@imau.edu.cn (Q. Shi), gaoli@dicp.ac.cn (G. Li).
  • About author:1Contributed equally to this work.
  • Supported by:
    central guidance for local scientific and technological development funds(2022ZY0081);Natural Science Foundation of China(22065029)

摘要:

光催化技术在环境治理领域展现出广阔应用前景, TiO2因化学稳定性高、成本低廉等优势成为该领域的研究热点. 然而, 其光生载流子复合率高、可见光响应不足等问题限制了催化效率的进一步提升. 晶面工程通过精准调控TiO2暴露晶面的电子结构与缺陷分布, 成为突破上述瓶颈的核心策略. 其中, TiO2{100}晶面以其较高的表面能(0.53 J·m‒2)、丰富的表面缺陷(OV和Ti3+)及独特的电子结构, 能够有效优化催化性能. 然而, 基于该晶面原位构建Z型异质结体系的研究鲜有报道. 因此, 探索由TiO2{100}调控构筑异质结复合材料的方法,揭示晶面暴露与异质结构建的协同作用机制, 对拓展光催化材料设计思路、提升光催化降解环境污染物性能具有重要科学价值.

基于上述分析, 本研究以Na2Ti3O7纳米管为前驱体, 通过水热过程调控AgBr在TiO2{100}晶面的负载及Ag⁺原位还原, 成功制备出AgBr/Ag/TiO2{100} Z型异质结复合材料, 并实现了光生载流子的快速分离和四环素的去除. 首先, 利用透射电镜、X射线衍射谱等表征技术确定了界面Ag仅存在于AgBr/Ag/TiO2{100}中, 这表明了界面Ag的形成与锐钛矿暴露的特定晶面有关. 进一步, 通过X射线光电子能谱和电子顺磁共振波谱, 结合理论计算模拟结果, 确定OV附近的补偿电子对水热过程中界面Ag的产生起关键还原作用. 通过固体紫外漫反射光谱、莫特-肖特基曲线和价带-X射线光电子能谱分析半导体的能带结构, 显示AgBr和TiO2单独复合时会形成p-n结. 四环素降解实验表明, ABT-3(A代表Ag, B代表Br, T表示TiO2, 3代表AgBr质量分数为30%)的反应速率(2.56 × 10‒3 mg‒1·L·min‒1)比KBT-3 (1.84 × 10‒3 mg‒1·L·min‒1)提高了40%, 反映出界面Ag加速载流子分离和转移的作用. 并且, 借助飞秒瞬态吸收光谱研究了AgBr/Ag/TiO2{100}和AgBr/TiO2{101}的载流子动力学差异, 分析表明, AgBr/Ag/TiO2{100}中被缺陷能级捕获的电子与空穴复合需要更长的时间(τ3(ABT-3) = 286.4 ps > τ3(KBT-3) = 72.5 ps), 说明存在不同于p-n结的载流子迁移路径. 最后, 原位X射线光电子能谱证实了界面Ag使AgBr/Ag/TiO2{100}按Z型异质结路径分离光生载流子. 自由基捕获实验和电子自旋共振信号显示, 超氧自由基和空穴为主要降解活性物种. 另外, 对降解中间体的毒性分析表明, 经AgBr/Ag/TiO2{100}降解后的溶液对生物生长发育毒性显著降低.

综上, 本文成功建立了TiO2{100}面诱导还原构建Z型异质结的方法, 实现了光吸收与载流子分离的协同优化. 界面Ag不仅作为电子介体促进界面电荷转移, 还通过表面等离子体共振拓宽可见光响应. 该工作为晶面调控及其异质结的合理构筑提供了重要依据.

关键词: 界面诱导还原, AgBr/Ag0/TiO2{100}, Z型异质结, 氧空位, 光催化, 四环素降解

Abstract:

Given their unique structure-dependent properties, strategically designing semiconductor-based photocatalysts, which expose highly reactive crystalline facets, is widely used to tune their performance. Herein, AgBr/Ag/TiO2{100} nanorods Z-scheme heterojunction composites were prepared via hydrothermal and in situ facet-induced reduction. Transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, and density functional theory calculations reveal that the selective exposure of TiO2{100} facets with abundant oxygen vacancies (OV) promotes the formation of metallic silver on the interfaces between AgBr and TiO2{100}. Metallic silver can mediate interfacial charge transfer by facilitating the photogenerated carrier recombination of the conduction band of TiO2{100} and the valence band of AgBr. As a result, a Z-scheme heterojunction is formed in AgBr/Ag/TiO2{100}. The AgBr/Ag/TiO2{100} exhibits faster degradation of tetracycline in aqueous solution compared to pristine AgBr, TiO2{101}, TiO2{100} and AgBr/TiO2{101} p-n heterojunctions. This is attributed to the effect of the Z-scheme heterojunction on prolonging the lifetime of photogenerated carriers, which is confirmed by femtosecond transient absorption spectroscopy. The photocatalytic mechanism and degradation pathways are discussed along with a toxicity assessment of the intermediates. Overall, this work develops a new approach for designing Z-scheme heterojunction photocatalysts via selective facet control of anatase TiO2.

Key words: Facet-induced reduction, AgBr/Ag0/TiO2{100}, Z-scheme heterostructure, Oxygen vacancy, Photocatalysis, Tetracycline degradation