催化学报 ›› 2025, Vol. 79: 68-77.DOI: 10.1016/S1872-2067(25)64759-0

• 论文 • 上一篇    下一篇

催化剂精准制备与理论计算相结合揭示CO2电化学还原反应中Ni单原子催化剂活性位结构

徐余幸a,1, 王雷雷a,1, 刘琴a,1, 滕波涛b, 武传强c, 葛炳辉c, 毕文团d, 顾明慧a, 张梦凯a, 严欢a,*(), 路军岭a,*()   

  1. a中国科学技术大学化学与材料科学学院, 精准智能化学全国重点实验室, 安徽合肥230026
    b天津科技大学化工与材料学院, 天津市卤水化工与资源生态化利用重点实验室, 天津300457
    c安徽大学物质科学与信息技术研究院, 信息材料与智能感知安徽省实验室, 安徽合肥230601
    d合肥综合性国家科学中心能源研究院, 安徽合肥230051
  • 收稿日期:2025-04-10 接受日期:2025-05-30 出版日期:2025-12-18 发布日期:2025-10-27
  • 通讯作者: 严欢,路军岭
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发项目(2021YFA1502802);国家重点研发项目(2023YFA1508200);国家自然科学基金(22025205);国家自然科学基金(22221003);国家自然科学基金(22175051);中国科学技术大学前沿科学重大研究计划(LS2060000002);中国科学院前沿科学重点研究项目(ZDBS-LY-SLH003);中央高校基本科研业务费专项资金(WK2060000090);同步辐射联合基金(KY2060000258)

Integrating controlled synthesis and theory for revealing of active site structure of single-atom nickel catalysts in electrochemical CO2 reduction

Yuxing Xua,1, Leilei Wanga,1, Qin Liua,1, Botao Tengb, Chuanqiang Wuc, Binghui Gec, Wentuan Bid, Minghui Gua, Mengkai Zhanga, Huan Yana,*(), Junling Lua,*()   

  1. aKey Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
    bTianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
    cInformation Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
    dInstitute of Energy Hefei Comprehensive National Science Center, Hefei 230051, Anhui, China
  • Received:2025-04-10 Accepted:2025-05-30 Online:2025-12-18 Published:2025-10-27
  • Contact: Huan Yan, Junling Lu
  • About author:1Contributed equally to this work.
  • Supported by:
    National Key R&D Program of China(2021YFA1502802);National Key R&D Program of China(2023YFA1508200);National Natural Science Foundation of China(22025205);National Natural Science Foundation of China(22221003);National Natural Science Foundation of China(22175051);Major Frontier Research Project of the University of Science and Technology of China(LS2060000002);Key Research Program of Frontier Sciences, CAS(ZDBS-LY-SLH003);Fundamental Research Funds for the Central Universities(WK2060000090);National Synchrotron Radiation Laboratory(KY2060000258)

摘要:

由于化石能源的大量使用, CO2的过度排放已引发严重的气候与环境问题. 电化学CO2还原反应(CO2RR)可将CO2转化为高附加值的化学品, 因而备受关注. 近年来, 氮掺杂碳(NC)负载的Ni单原子催化剂(Ni1/NC)因其高原子利用率和优异的CO选择性成为研究热点. 然而, 其活性位点结构仍存在争议. 虽然Ni1-N4结构常被认为是活性结构, 但是理论计算发现, 其CO2RR制备CO速控步的吉布斯自由能却高于1.7 eV. 最新研究表明, Ni1-N3, Ni1-N2C2或Ni1-N1C3等结构因具有更高的电子密度, 而被认为具有更优活性. 然而, 目前在原子尺度上针对Ni单原子配位结构与CO2RR制备CO活性关系的系统性实验和理论研究仍然缺乏.
本文以g-C3N4@Glucose为前驱体, 通过在氩气氛围下改变热处理温度和时间(600, 800, 900, 1000 °C各1 h, 以及1000 °C持续3 h), 精确调控NC载体的缺陷位结构. 利用X射线光电子能谱, 发现吡啶氮(Npyri), 吡咯氮和石墨氮含量随温度升高逐渐降低. 随后, 在200 °C通过原子层沉积技术制备了一系列不同配位环境的Ni1/NC. 结合球差校正高角环形暗场扫描透射电子显微镜和X射线吸收精细结构谱证实了Ni1/NC成功制备; 并结合电感耦合等离子体原子发射光谱发现, Ni负载量与载体中Npyri含量呈线性相关, 表明Npyri是Ni原子的锚定位点. CO2RR性能测试结果表明, 具有配位数(CN)为4且Npyri含量较低的Ni1/NC催化剂表现出优异的催化性能: 在-0.7至-1.0 V电位范围内CO法拉第效率超过90%, -0.78 V下质量活性高达6.5 A mgNi‒1, 且稳定性突出, 显著优于CN较低, Npyri含量较高的其它Ni单原子催化剂. 密度泛函理论(DFT)计算系统研究了可能的3配位和4配位Ni1-NxCy结构, 包括Ni-N1C2, Ni-N2C1, Ni-N3, Ni-N3C1, Ni-N2C2, Ni-N1C3和Ni-N4, 以研究锚定位点的局部电子结构如何调控Ni原子的电子性质, 并进一步影响其活性和稳定性. 计算结果表明, 催化剂性能与Ni 3d轨道的最高占据分子轨道(HOMO)位置之间存在线性关系: 具有最高HOMO能级的4配位Ni1-N1C3结构被证明为CO2RR制备CO的真实活性位点; 同时, 晶体轨道哈密顿布居分析进一步揭示, 该结构具有优异的稳定性, 与实验结果一致.
综上, 本研究通过催化剂的精准制备与DFT计算相结合, 系统性地揭示了Ni单原子催化剂在CO2RR制CO过程中配位结构与催化活性之间的关系, 为合理设计高活性、高稳定性的单原子催化剂提供了新的理论基础和实验方法.

关键词: 单原子催化剂, Ni1/NC, 配位结构调控, 活性位点结构, 电化学CO2还原

Abstract:

Electrocatalytic conversion of carbon dioxide (CO2) offers an effective method of CO2 fixation to mitigate global warming and the energy crisis. However, for supported Ni single-atom catalysts (SACs), which are among the most promising candidates for this application, the relationship between Ni coordination structure and catalytic properties is still under strong debate. Here, we fabricated a series of Ni SACs through precise-engineering of anchor sites on nitrogen-doped carbon (NC) followed by Ni atom anchoring using atomic layer deposition. Among them, a Ni1/NC SAC, with a coordination number (CN) of four but less pyridinic nitrogen (Npyri), achieved over 90% faradaic efficiency for CO at potentials from -0.7 to -1.0 V and a mass activity of 6.5 A/mgNi at -0.78 V along with high stability, outperforming other Ni SACs with lower CN and more Npyri. Theoretical calculations of various three and four-coordinated Ni1-NxCy structures revealed a linear correlation between the reaction Gibbs free energy for the potential-limiting step and the highest occupied molecular orbital (HOMO) position of Ni-3d orbitals, therein the four-coordinated Ni1-N1C3 with the highest HOMO position is identified as the active site for the electrocatalytic CO2-to-CO process, in line with the experimental results.

Key words: Single-atom catalyst, Ni1/NC, Coordination structure regulation, Active site structure, Electrochemical CO2 reduction