催化学报 ›› 2026, Vol. 80: 59-91.DOI: 10.1016/S1872-2067(25)64859-5
收稿日期:2025-05-12
接受日期:2025-07-11
出版日期:2026-01-05
发布日期:2026-01-05
通讯作者:
管景奇
基金资助:
Liyuan Xiao, Zhenlu Wang, Jingqi Guan(
)
Received:2025-05-12
Accepted:2025-07-11
Online:2026-01-05
Published:2026-01-05
Contact:
Jingqi Guan
About author:Jingqi Guan (Jilin University) was invited as a young member of the 6th Editorial Board of Chin. J. Catal. and the 5th Editorial Board of Acta Phys.-chim. Sin. Prof. Jingqi Guan received his B.A. degree in 2002 and Ph.D. degree in 2007 from Jilin University. He carried out postdoctoral research in the University of California at Berkeley from 2012 to 2013 and in the Dalian Institute of Chemical Physics from 2014 to 2018. His research interests are in engineering single-atom catalysts and 2D materials for electrocatalysis, energy, and the environment. He has published more than 250 peer-reviewed papers.
Supported by:摘要:
金属有机框架材料(MOFs)因其高比表面积、可调孔径结构和多功能性, 在电催化领域展现出广阔的应用前景. 然而, 传统MOFs多采用单核金属离子构建, 存在活性位点有限、电子传输效率低等问题, 限制了其催化性能的进一步提升. 多核MOFs通过引入金属团簇作为次级构筑单元, 不仅显著增加了反应活性位点, 还赋予材料复杂的电子结构与稳定的几何构型, 展现出更优的电催化性能和调控潜力. 尽管相关研究日益增多, 但系统性总结仍较缺乏, 尤其在催化机制与结构调控策略方面尚缺少深入探讨.
本文围绕多核MOFs在电催化领域中的研究进展进行系统综述, 内容涵盖合成策略、表征方法、催化机制、性能调控及电催化应用五个方面. 首先, 归纳了原位组装与预组装两类构建方式, 并分析了合成过程中金属团簇结构调控的关键影响因素, 包括反应条件、配体类型及辅助试剂等. 其次, 介绍了多种原位表征技术(如红外光谱、拉曼光谱、X射线吸收精细结构、X射线光电子能谱等)在多核MOFs研究中的应用, 探讨它们对金属中心价态变化、配位环境演化和中间体形成过程的实时监测作用, 并分析其优缺点. 系统总结了多核MOFs在析氢、析氧、氧还原、CO2还原、氮还原以及硝酸盐还原等典型电催化反应中的应用进展与催化作用机制. 在此基础上, 重点探讨了其在电催化过程中的作用本质. 多核金属团簇结构中金属位点间的协同作用、电子耦合以及构型调节可有效优化反应物的吸附与活化路径, 促进电子传输, 并稳定关键中间体, 从而显著提升催化性能与反应选择性. 此外, 重点讨论了多核MOFs的性能调控策略. 通过调节金属簇的核数、组成、电子结构及引入缺陷位点, 可实现对催化活性和选择性的精准调控; 同时, 通过配体功能化及活性位点微环境的调控, 也能进一步优化催化过程中的动力学行为与电子输运效率. 这些调控手段在不同反应体系中均展现出显著的性能提升效果. 最后, 指出当前多核MOFs在规模化制备、结构稳定性和真实活性位点识别方面仍面临挑战. 未来研究应加强构效关系的深入解析, 发展高通量筛选与多模态原位表征技术, 并推动多核MOFs材料向器件集成与工程化方向转化.
综上, 本文综述了多核MOFs的可控合成、原位表征、反应机制、调制策略和电催化应用, 并着重讨论了吸附、活性位点和电子转移在电催化过程中的作用. 该论文为多核MOFs的设计与应用提供了系统参考, 推动其在清洁能源催化体系中的应用进程.
肖丽媛, 王振旅, 管景奇. 多核金属有机框架材料在电催化中的研究进展[J]. 催化学报, 2026, 80: 59-91.
Liyuan Xiao, Zhenlu Wang, Jingqi Guan. Advances in multinuclear metal-organic frameworks for electrocatalysis[J]. Chinese Journal of Catalysis, 2026, 80: 59-91.
Fig. 1. (a) The development of MOFs. Reproduced with permission: Copyright 1997, Wiley‐VCH [24]; Copyright 2002, American Chemical Society [25]; Copyright 2004, Wiley‐VCH [26]; Copyright 2005, Elsevier Ltd. [27]; Copyright 2006, American Chemical Society[28]; Copyright 2008, American Chemical Society [29]; Copyright 2013, American Chemical Society [30]; Copyright 2014, American Chemical Society [31]; Copyright 2015, Wiley‐VCH [32]; Copyright 2017, Royal Society of Chemistry [33]; Copyright 2019, Royal Society of Chemistry [34]; Copyright 2022, Royal Society of Chemistry [35]. (b) The formation mechanism of MOFs. (c) Binuclear Ce-based MOF. Reproduced with permission [12]. Copyright 2022, American Chemical Society. (d) A trinuclear MOF. Reproduced with permission [36]. Copyright 2024, Wiley‐VCH. (e) Hexanuclear Zr-based MOF. Reproduced with permission [37]. Copyright 2022, Elsevier Ltd. (f) A dodecanuclear MOF. Reproduced with permission [38]. Copyright 2020, Wiley‐VCH.
Fig. 2. (a?f) Summary of synthesis methodologies of MOFs. Reproduced with permission [87]. Copyright 2024, Elsevier Ltd. Reproduced with permission [91]. Copyright 2022, Royal Society of Chemistry. Reproduced with permission [94]. Copyright 2022, Elsevier Ltd. Reproduced with permission [96]. Copyright 2024, Elsevier Ltd. Reproduced with permission [97]. Copyright 2023, Royal Society of Chemistry. Reproduced with permission [100]. Copyright 2022, Elsevier Ltd.
| SBU type | Nuclearity | Configuration | Representative MOFs | Ref. |
|---|---|---|---|---|
| Paddlewheel dinuclear cluster | 2 | quasi-square planar or distorted tetrahedral | HKUST-1 MOF-505 | [ |
| Trinuclear cluster | 3 | planar triangular | MIL-100(Fe) PCN-333 | [ |
| Tetranuclear cluster | 4 | tetrahedral | UiO-66 MIL-125(Ti) | [ |
| Hexanuclear cluster | 6 | octahedral | UiO-67/68 MOF-808 | [ |
| High-nuclearity cluster | ≥6 | cube-like | ZJU-28 NU-1000 | [ |
| Dodecanuclear cluster | 12 | cage-like or wheel-like | Ln12 | [ |
| Helical trinuclear chain | 3 | 1D infinite chain | MIL-118 | [ |
| Wheel-shaped Mo cluster | 6 | cyclic wheel-shaped configuration | POMOFs Ni8Mo8 | [ |
| Defective Zr cluster | 6-8 | open octahedral configuration | DUT-67 MOF-545 | [ |
Table 1 Classification of multinuclear MOFs by SBU types.
| SBU type | Nuclearity | Configuration | Representative MOFs | Ref. |
|---|---|---|---|---|
| Paddlewheel dinuclear cluster | 2 | quasi-square planar or distorted tetrahedral | HKUST-1 MOF-505 | [ |
| Trinuclear cluster | 3 | planar triangular | MIL-100(Fe) PCN-333 | [ |
| Tetranuclear cluster | 4 | tetrahedral | UiO-66 MIL-125(Ti) | [ |
| Hexanuclear cluster | 6 | octahedral | UiO-67/68 MOF-808 | [ |
| High-nuclearity cluster | ≥6 | cube-like | ZJU-28 NU-1000 | [ |
| Dodecanuclear cluster | 12 | cage-like or wheel-like | Ln12 | [ |
| Helical trinuclear chain | 3 | 1D infinite chain | MIL-118 | [ |
| Wheel-shaped Mo cluster | 6 | cyclic wheel-shaped configuration | POMOFs Ni8Mo8 | [ |
| Defective Zr cluster | 6-8 | open octahedral configuration | DUT-67 MOF-545 | [ |
| Linker | Ligand | Structural characteristics | Coordination characteristics | Examples |
|---|---|---|---|---|
| Rigid dicarboxylic acid | terephthalic acid(H2BDC), naphthalic acid (H2NDC), anthraquinone diformic acid (H2AQDC) | rigid main chain structure, π conjugation | multidentate, bridging ability | BIPT-3 [ MCF-37 [ |
| Flexible dicarboxylic acid | 1,4-cyclohexanedicarboxylic acid (H2CHDC), glutaric acid, Adipic acid | conformational flexibility, rotatable | high coordinative freedom, asymmetric topology | Cu2(CHDC)2 [ [Zn(BTA)(chdc)0.5]n [ |
| Tricarboxylic acid | trimesic acid (H3BTC), trimellitic acid | multi-dimensional porous structure | multisite bridging, complex topological structures | HKUST-1 [ TCNQ@Cu3(BTC)2 [ HKUST-1 [ |
| Tetracarboxylic acid | pyromellitic acid (H4BTEC) | high connectivity, high adaptability | polynuclear polymeric metal clusters, highly cross-linked 3D network structure | CTH-14 [ Mg5(OH)2(BTEC)2(H2O)4·11H2O [ |
| Pyrazolate | 3,5-dimethylpyrazole (DMPZ), 1H-pyrazole-3,5-dicarboxylic acid (H3PDC) | bearing a five-membered nitrogen heterocycle | π conjugatio, chelating or bridging | FDM-91 [ |
| Imidazole | 2-methylimidazole (2-MeIM), imidazole-4,5-dicarboxylic acid (H3IDC) | high thermal and chemical stability | N-donor ligand, extended π-conjugation | ZIF-8 [ ZIF-67 [ |
| Phosphate | phenylphosphonic acid (PPA), aminomethylphosphonic acid (AMPA) | contains P=O and P-OH bonds, highly acidic multidentate oxygen donor | multidentate and multibridging, high coordination strength | Zr-MOFs/F-ssDNA [ |
| N-heterocyclic carboxylic acids | pyridine-2,6-dicarboxylic acid (H2PDC), imidazolecarboxylic acid | bearing N-heterocycles and carboxyl groups | N,O-multidentate coordination, assembly of multinuclear metal clusters | IHEP-11 [ |
Table 2 Classification of multinuclear MOFs by linkers.
| Linker | Ligand | Structural characteristics | Coordination characteristics | Examples |
|---|---|---|---|---|
| Rigid dicarboxylic acid | terephthalic acid(H2BDC), naphthalic acid (H2NDC), anthraquinone diformic acid (H2AQDC) | rigid main chain structure, π conjugation | multidentate, bridging ability | BIPT-3 [ MCF-37 [ |
| Flexible dicarboxylic acid | 1,4-cyclohexanedicarboxylic acid (H2CHDC), glutaric acid, Adipic acid | conformational flexibility, rotatable | high coordinative freedom, asymmetric topology | Cu2(CHDC)2 [ [Zn(BTA)(chdc)0.5]n [ |
| Tricarboxylic acid | trimesic acid (H3BTC), trimellitic acid | multi-dimensional porous structure | multisite bridging, complex topological structures | HKUST-1 [ TCNQ@Cu3(BTC)2 [ HKUST-1 [ |
| Tetracarboxylic acid | pyromellitic acid (H4BTEC) | high connectivity, high adaptability | polynuclear polymeric metal clusters, highly cross-linked 3D network structure | CTH-14 [ Mg5(OH)2(BTEC)2(H2O)4·11H2O [ |
| Pyrazolate | 3,5-dimethylpyrazole (DMPZ), 1H-pyrazole-3,5-dicarboxylic acid (H3PDC) | bearing a five-membered nitrogen heterocycle | π conjugatio, chelating or bridging | FDM-91 [ |
| Imidazole | 2-methylimidazole (2-MeIM), imidazole-4,5-dicarboxylic acid (H3IDC) | high thermal and chemical stability | N-donor ligand, extended π-conjugation | ZIF-8 [ ZIF-67 [ |
| Phosphate | phenylphosphonic acid (PPA), aminomethylphosphonic acid (AMPA) | contains P=O and P-OH bonds, highly acidic multidentate oxygen donor | multidentate and multibridging, high coordination strength | Zr-MOFs/F-ssDNA [ |
| N-heterocyclic carboxylic acids | pyridine-2,6-dicarboxylic acid (H2PDC), imidazolecarboxylic acid | bearing N-heterocycles and carboxyl groups | N,O-multidentate coordination, assembly of multinuclear metal clusters | IHEP-11 [ |
Fig. 3. (a) The structure of MIL-100(Fe). Reproduced with permission [104]. Copyright 2017, American Chemical Society. (b) The coordination model of Ce-AQ. (c) Oxygen bridge groups of Ce-O-Ce in Ce-AQ. Reproduced with permission [12]. Copyright 2022, American Chemical Society. Structures of [RE3(μ3-OH)(COO)6] SBUs (d), RE-BDC (e) and RE-NDC (f). Reproduced with permission [105]. Copyright 2017, Royal Society of Chemistry.
| Characteristic | In-situ by self-assembly | Pre-synthesize metal clusters |
|---|---|---|
| Representative example | MIL-100 (Fe) [103] Ce-AQ [12] UiO-66(Zr) [106] ZIF-8@XLPEO [107] | RE-BDC [105] PCN-242(Fe2Co) [108] UiO-66-NH2 [109] |
| Synthesis yield | relatively low yield, condition-dependent | relatively high yield; well-controlled assembly process |
| Crystallinity | relatively low crystallinity, unstable crystal quality | highly crystalline with uniform crystal quality |
| Controllability | poor control over nuclearity and morphology | precise control; uniform structure |
| Functional tunability | dynamic structure, uneven active site distribution | stable structure, well-defined active sites |
| Advantages | simple synthesis, diverse cluster structures | high controllability, facilitates functional design |
| Challenges | low reproducibility, low yield | complex synthesis, stringent conditions |
Table 3 Comparison of in-situ vs. pre-assembled cluster approaches in constructing multinuclear MOFs.
| Characteristic | In-situ by self-assembly | Pre-synthesize metal clusters |
|---|---|---|
| Representative example | MIL-100 (Fe) [103] Ce-AQ [12] UiO-66(Zr) [106] ZIF-8@XLPEO [107] | RE-BDC [105] PCN-242(Fe2Co) [108] UiO-66-NH2 [109] |
| Synthesis yield | relatively low yield, condition-dependent | relatively high yield; well-controlled assembly process |
| Crystallinity | relatively low crystallinity, unstable crystal quality | highly crystalline with uniform crystal quality |
| Controllability | poor control over nuclearity and morphology | precise control; uniform structure |
| Functional tunability | dynamic structure, uneven active site distribution | stable structure, well-defined active sites |
| Advantages | simple synthesis, diverse cluster structures | high controllability, facilitates functional design |
| Challenges | low reproducibility, low yield | complex synthesis, stringent conditions |
Fig. 5. (a) In-situ IR cell. (b) In-situ Raman cell. (c) In-situ XRD cell. (d) In-situ XPS cell. (e) In-situ XAS cell. (f) In-situ cell for M?ssbauer measurements. Reproduced with permission [110]. Copyright 2024, American Chemical Society. (g) In-situ IR insight into the CO2 transfer process on CuSiF6-TPPY surface. Reproduced with permission [116]. Copyright 2024, Elsevier Ltd. (h) In-situ Raman exploration of CO2 adsorption and activation. Reproduced with permission [121]. Copyright 2022, American Chemical Society. In-situ XANES (i) and FE-EXAFS (j) at the Cu K-edge. Reproduced with permission [134]. Copyright 2022, American Chemical Society.
Fig. 6. (a) The mechanism for the HER in acid and alkaline electrolytes. Reproduced with permission [156]. Copyright 2021, Royal Society of Chemistry. (b) The Volcano plot of exchange current density as a function of ?GH*. Reproduced with permission[157]. Copyright 2019, Elsevier Ltd. Al 2p (c) and Ru 2p (d) spectra of Al0.35/Ru0.15-TCPP-CNTs, Al0.35/Ru0.15-TCPP and Al-TCPP. The charge density redistributions of the Al-TCPP (e), Al0.35/Ru0.15-TCPP (f) and Al0.35/Ru0.15-TCPP-CNTs (g) systems. (g) The feasible HER mechanism for the Al0.35/Ru0.15-TCPP-CNTs. (h) The feasible HER mechanism for the Al0.35/Ru0.15-TCPP-CNTs. Reproduced with permission [160]. Copyright 2024, Royal Society of Chemistry.
| Catalyst | η10 (mV) | Tafel slope (mV dec‒1) | Electrolyte | Ref. |
|---|---|---|---|---|
| MOF-3 | 196 | 112.1 | 1.0 mol L‒1 KOH | [ |
| MOF-4 | 238 | 137.8 | 1.0 mol L‒1 KOH | [ |
| Co/Cu-MOF(3) | 391 | 94 | 1.0 mol L‒1 KOH | [ |
| Al0.35/Ru0.15-TCPP | 55 | 76.0 | 1.0 mol L‒1 KOH | [ |
| Mg2V-MOF | 195 | 174 | 1.0 mol L‒1 KOH | [ |
| Ni1Fe2-MOF@GC | 373 | 107 | 0.1 mol L‒1 KOH | [ |
| Fe2Zn-MOF | 221 | 174 | 0.1 mol L‒1 KOH | [ |
| [Co0.5(DIB)(HSA)](C10H8)0.5 | 135 | 84 | 1.0 mol L‒1 KOH | [ |
| [Co(DIB)0.5(SA)] | 294 | 96 | 1.0 mol L‒1 KOH | [ |
| [Co(DIB)0.5(SA)]·(DIB)0.5 | 349 | 121 | 1.0 mol L‒1 KOH | [ |
| Co2Ni1N | 102.6 | 60.17 | 1.0 mol L‒1 KOH | [ |
| Co3N | 246.0 | 108.6 | 1.0 mol L‒1 KOH | [ |
| Ni3N | 296.1 | 133.2 | 1.0 mol L‒1 KOH | [ |
| [(Ce(HTCPP))·H2O]n | 244 | 265 | 1.0 mol L‒1 KOH | [ |
Table 4 Performance comparison of multinuclear MOFs for the HER.
| Catalyst | η10 (mV) | Tafel slope (mV dec‒1) | Electrolyte | Ref. |
|---|---|---|---|---|
| MOF-3 | 196 | 112.1 | 1.0 mol L‒1 KOH | [ |
| MOF-4 | 238 | 137.8 | 1.0 mol L‒1 KOH | [ |
| Co/Cu-MOF(3) | 391 | 94 | 1.0 mol L‒1 KOH | [ |
| Al0.35/Ru0.15-TCPP | 55 | 76.0 | 1.0 mol L‒1 KOH | [ |
| Mg2V-MOF | 195 | 174 | 1.0 mol L‒1 KOH | [ |
| Ni1Fe2-MOF@GC | 373 | 107 | 0.1 mol L‒1 KOH | [ |
| Fe2Zn-MOF | 221 | 174 | 0.1 mol L‒1 KOH | [ |
| [Co0.5(DIB)(HSA)](C10H8)0.5 | 135 | 84 | 1.0 mol L‒1 KOH | [ |
| [Co(DIB)0.5(SA)] | 294 | 96 | 1.0 mol L‒1 KOH | [ |
| [Co(DIB)0.5(SA)]·(DIB)0.5 | 349 | 121 | 1.0 mol L‒1 KOH | [ |
| Co2Ni1N | 102.6 | 60.17 | 1.0 mol L‒1 KOH | [ |
| Co3N | 246.0 | 108.6 | 1.0 mol L‒1 KOH | [ |
| Ni3N | 296.1 | 133.2 | 1.0 mol L‒1 KOH | [ |
| [(Ce(HTCPP))·H2O]n | 244 | 265 | 1.0 mol L‒1 KOH | [ |
Fig. 7. (a) The proposed OER mechanismin in acid and alkaline electrolytes. Reproduced with permission [156]. Copyright 2021, Royal Society of Chemistry. Electron-transfer (b) process and (c) pathways in traditional AEM route. Electron-transfer pathways (d) and process in traditional LOM route (e). Reproduced with permission [176]. Copyright 2022, Wiley‐VCH. (f) Schematic illustration of OPM. Reproduced with permission [180]. Copyright 2024, American Chemical Society. (g) High-solution XPS spectra of Fe 2p in Fe2V-MOF and Fe3-MOF. (h) Schematic representation of the electronic coupling between V and Fe in Fe2V-MOF and Fe3-MOF. Reproduced with permission [166]. Copyright 2022, American Chemical Society. (i) EPR spectra. (j) DOS of Co 3d orbital. Reproduced with permission [182]. Copyright 2019, American Chemical Society.
| Catalyst | η10 (mV) | Tafel slope (mV·dec-1) | Electrolyte | Ref. |
|---|---|---|---|---|
| MOF-3 | 180 | 189.7 | 1.0 mol L‒1 KOH | [ |
| MOF-4 | 228 | 290.6 | 1.0 mol L‒1 KOH | [ |
| Co4-Co-MOF | 357 | — | 1.0 mol L‒1 KOH | [ |
| Co/Cu-MOF(1) | 320 | 49 | 1.0 mol L‒1 KOH | [ |
| CUMSs-ZIF-67 | 320 | 53.7 | 1.0 mol L‒1 KOH | [ |
| BUT-124(Co)-S80 | 393 | — | 1.0 mol L‒1 KOH | [ |
| Fe2V-MOF | 314 | 58 | 1.0 mol L‒1 KOH | [ |
| Ni1Fe2-MOF@GC | 283 | 41 | 0.1 mol L‒1 KOH | [ |
| Fe2Co-MOF | 339 | 36.2 | 1 mol L‒1 KOH | [ |
| Ni-MOF-Fe-Se-400 | 242 | 51.2 | 1 mol L‒1 KOH | [ |
| PCN-Fe2Co-Fe2Ni | 271 | 67.7 | 1 mol L‒1 KOH | [ |
| [Co(dpda)(4,4′-bpy)]n | 448 | 93.3 | 1 mol L‒1 KOH | [ |
| AB&Ni-MOF(1:1)/GC | 379 | 77 | 1 mol L‒1 KOH | [ |
| NNU-22 | 376 | 77.2 | 0.1 mol L‒1 KOH | [ |
| NNU-23 | 365 | 81.8 | 0.1 mol L‒1 KOH | [ |
| NiFe-NFF | 227 | 38.9 | 1 mol L‒1 KOH | [ |
| Fe2Ni MOF/NF | 222 | 42.4 | 1.0 mol L‒1 KOH | [ |
| hov-IrOx/CeO2 | 251 | 55 | 0.1 mol L‒1 HClO4 | [ |
| FeNiBTC/SSM5 | 223.7 | 74.5 | 1 mol L‒1 KOH | [ |
| NiCoFeOx@C-400 | 253 | 83.3 | 1 mol L‒1 KOH | [ |
Table 5 Performance comparison of multinuclear MOFs for the OER.
| Catalyst | η10 (mV) | Tafel slope (mV·dec-1) | Electrolyte | Ref. |
|---|---|---|---|---|
| MOF-3 | 180 | 189.7 | 1.0 mol L‒1 KOH | [ |
| MOF-4 | 228 | 290.6 | 1.0 mol L‒1 KOH | [ |
| Co4-Co-MOF | 357 | — | 1.0 mol L‒1 KOH | [ |
| Co/Cu-MOF(1) | 320 | 49 | 1.0 mol L‒1 KOH | [ |
| CUMSs-ZIF-67 | 320 | 53.7 | 1.0 mol L‒1 KOH | [ |
| BUT-124(Co)-S80 | 393 | — | 1.0 mol L‒1 KOH | [ |
| Fe2V-MOF | 314 | 58 | 1.0 mol L‒1 KOH | [ |
| Ni1Fe2-MOF@GC | 283 | 41 | 0.1 mol L‒1 KOH | [ |
| Fe2Co-MOF | 339 | 36.2 | 1 mol L‒1 KOH | [ |
| Ni-MOF-Fe-Se-400 | 242 | 51.2 | 1 mol L‒1 KOH | [ |
| PCN-Fe2Co-Fe2Ni | 271 | 67.7 | 1 mol L‒1 KOH | [ |
| [Co(dpda)(4,4′-bpy)]n | 448 | 93.3 | 1 mol L‒1 KOH | [ |
| AB&Ni-MOF(1:1)/GC | 379 | 77 | 1 mol L‒1 KOH | [ |
| NNU-22 | 376 | 77.2 | 0.1 mol L‒1 KOH | [ |
| NNU-23 | 365 | 81.8 | 0.1 mol L‒1 KOH | [ |
| NiFe-NFF | 227 | 38.9 | 1 mol L‒1 KOH | [ |
| Fe2Ni MOF/NF | 222 | 42.4 | 1.0 mol L‒1 KOH | [ |
| hov-IrOx/CeO2 | 251 | 55 | 0.1 mol L‒1 HClO4 | [ |
| FeNiBTC/SSM5 | 223.7 | 74.5 | 1 mol L‒1 KOH | [ |
| NiCoFeOx@C-400 | 253 | 83.3 | 1 mol L‒1 KOH | [ |
Fig. 8. The ORR pathways with AM (a) and DM (b) in acid and alkaline media. Reproduced with permission [199]. Copyright 2024, Royal Society of Chemistry. (c) The synthesis of Co4-M-MOFs (M = Cu, Co, and Zn). Reproduced with permission [40]. Copyright 2024, Wiley‐VCH. Volcano plots of the hydrogen adsorption free energy of HER with the PDOS at the Fermi level (d) and the calculated overpotentials of OER with the d-band positions (e). Reproduced with permission [147]. Copyright 2021, Royal Society of Chemistry.
Fig. 9. (a) Reaction pathways of the CO2RR. Reproduced with permission [213]. Copyright 2024, Elsevier Ltd. (b) The synthesis and structure of Cu-X. (c) Average FEs of HER and total CO2RR. (d) Average FEs of various reduction products over Cu-I. (e) PDOS of Cu atoms in Cu-Cl, Cu-Br, and Cu-I. (f) Intermediates among process of CO2 electroreduction on Cu-I. Reproduced with permission [230]. Copyright 2022, Wiley‐VCH. (g) The cage structure in the Cu1Ni-BDP MOF. XANES (h) and EXAFS (i) spectra. (j) Time-resolved in-situ XRD patterns. (k) In-situ ATR-SEIRAS spectra. Reproduced with permission [232]. Copyright 2023, American Chemical Society. XPS spectra of In 3d (l) and Mg 2p (m). (n) EPR spectrum. Reproduced with permission [233]. Copyright 2024, American Chemical Society. (o) FE at different operation voltages. (p) The distribution of unpaired electrons in InCo-ABDBC-HIN. Reproduced with permission [234]. Copyright 2023, Royal Society of Chemistry.
| Catalyst | Electrolyte | Product | Current density (mA cm‒2) | FE (%) | Ref. |
|---|---|---|---|---|---|
| SNNU-42 | 0.5 mol L‒1 H2SO4 | HCOOH CO | 77.2 | 91.3 | [ |
| Cu1Ni-BDP | 1.0 mol L‒1 KOH | C2H4 | 278 | 52.7 | [ |
| InCo-ABDBC-HIN | 0.5 mol L‒1 EMIMBF4 | HCOOH CO | 26 | 81.6 | [ |
| In-ABDBC-HIN | 0.5 mol L‒1 EMIMBF4 | HCOOH CO | 25 | 79.97 | [ |
| In-ABDBC-HAIN | 0.5 mol L‒1 EMIMBF4 | HCOOH CO | 19 | 71.94 | [ |
| C-Zn1Ni4 ZIF-8 | 0.5 mol L‒1 KHCO3 | CO | 71.5 | 98 | [ |
| (Me2NH2+)[InIII-[Ni(C2S2(C6H4COO)2)2]]·3DMF·1.5H2O | 0.05 mol L‒1 KHCO3 | HCOOH CO | 36 | 91.47 | [ |
| MIL-68(In)-NH2 | 0.1 mol L‒1 KHCO3 | HCOOH | 108 | 94.40 | [ |
| Cu-MOF-74 | 0.1 mol L‒1 KHCO3 | CH4 | 10.9 | >50 | [ |
| Cu-I | 1 mol L‒1 KOH | CH4 | 77.7 | 57.2 | [ |
| Cu dimer - HKUST-1 | 1 mol L‒1 KOH | C2H4 | 262 | 45 | [ |
| 3D-CTU-MCOF | 0.5 mol L‒1 EMIMBF4 | C2 | >20 | 26.4 | [ |
Table 6 Performance comparison of multinuclear MOFs for CO2RR.
| Catalyst | Electrolyte | Product | Current density (mA cm‒2) | FE (%) | Ref. |
|---|---|---|---|---|---|
| SNNU-42 | 0.5 mol L‒1 H2SO4 | HCOOH CO | 77.2 | 91.3 | [ |
| Cu1Ni-BDP | 1.0 mol L‒1 KOH | C2H4 | 278 | 52.7 | [ |
| InCo-ABDBC-HIN | 0.5 mol L‒1 EMIMBF4 | HCOOH CO | 26 | 81.6 | [ |
| In-ABDBC-HIN | 0.5 mol L‒1 EMIMBF4 | HCOOH CO | 25 | 79.97 | [ |
| In-ABDBC-HAIN | 0.5 mol L‒1 EMIMBF4 | HCOOH CO | 19 | 71.94 | [ |
| C-Zn1Ni4 ZIF-8 | 0.5 mol L‒1 KHCO3 | CO | 71.5 | 98 | [ |
| (Me2NH2+)[InIII-[Ni(C2S2(C6H4COO)2)2]]·3DMF·1.5H2O | 0.05 mol L‒1 KHCO3 | HCOOH CO | 36 | 91.47 | [ |
| MIL-68(In)-NH2 | 0.1 mol L‒1 KHCO3 | HCOOH | 108 | 94.40 | [ |
| Cu-MOF-74 | 0.1 mol L‒1 KHCO3 | CH4 | 10.9 | >50 | [ |
| Cu-I | 1 mol L‒1 KOH | CH4 | 77.7 | 57.2 | [ |
| Cu dimer - HKUST-1 | 1 mol L‒1 KOH | C2H4 | 262 | 45 | [ |
| 3D-CTU-MCOF | 0.5 mol L‒1 EMIMBF4 | C2 | >20 | 26.4 | [ |
Fig. 10. Schematic diagram of ENRR on the surface: dissociation mechanism (a), association distal mechanism (b), association alternating mechanism (c), and enzymatic mechanism (d). Reproduced with permission [243]. Copyright 2024, Elsevier Ltd. (e) Combined volcano diagrams for flat (black) and stepped (red) TM surfaces in N2 reduction via Heyrovsky reaction, without (solid) and with (dotted) H-bonds. Reproduced with permission [247]. Copyright 2012, Royal Society of Chemistry. (f) FEs and NH3 yields on the MIL-100 (Al). (g) NRR mechanism on the MIL-100 (Al). Reproduced with permission [42]. Copyright 2020, American Chemical Society.
| Catalyst | Electrolyte | Product | Yield | FE (%) | Ref. |
|---|---|---|---|---|---|
| MIL-100 (Al) | 0.1 mol L‒1 KOH | NH3 | 10.6 μg h-1 cm-2 mgcat.-1 | 22.6 | [ |
| NH2-MIL-88B-Fe | 0.1 mol L‒1 Na2SO4 | NH3 | 1.205 × 10-10 mol s−1 cm−2 | 5.66 | [ |
| MIL-88B-Fe | 0.1 mol L‒1 Na2SO4 | NH3 | 3.575 × 10-11 mol s−1 cm−2 | 5.59 | [ |
| MoP @PPC | 0.1 mol L‒1 HCl | NH3 | 28.73 μg h-1 cm-2 mgcat.-1 | 2.48 | [ |
| Cu@Ce-MOF | 0.1 mol L‒1 KOH | NH3 | 14.83 μg h-1 cm-2 | 10.81 | [ |
| Fe-TCPP | 0.1 mol L‒1 HCl | NH3 | 44.77 μg h-1 cm-2 mgcat.-1 | 16.23 | [ |
| Co-TCPP | 0.1 mol L‒1 HCl | NH3 | 28.3 μg h-1 cm-2 mgcat.-1 | 11.58 | [ |
| SO3-MOF-808 | 0.5 mol L‒1 Na2SO4 | NH3 | 97 μmol cm-2 h | 87.5 | [ |
| NiFeRu-MIL-53 | 1 mol L‒1 KOH | NH3 | 62.39 mg h-1 cm-2 | 100 | [ |
Table 7 Performance comparison of multinuclear MOFs for NRR and NO3RR.
| Catalyst | Electrolyte | Product | Yield | FE (%) | Ref. |
|---|---|---|---|---|---|
| MIL-100 (Al) | 0.1 mol L‒1 KOH | NH3 | 10.6 μg h-1 cm-2 mgcat.-1 | 22.6 | [ |
| NH2-MIL-88B-Fe | 0.1 mol L‒1 Na2SO4 | NH3 | 1.205 × 10-10 mol s−1 cm−2 | 5.66 | [ |
| MIL-88B-Fe | 0.1 mol L‒1 Na2SO4 | NH3 | 3.575 × 10-11 mol s−1 cm−2 | 5.59 | [ |
| MoP @PPC | 0.1 mol L‒1 HCl | NH3 | 28.73 μg h-1 cm-2 mgcat.-1 | 2.48 | [ |
| Cu@Ce-MOF | 0.1 mol L‒1 KOH | NH3 | 14.83 μg h-1 cm-2 | 10.81 | [ |
| Fe-TCPP | 0.1 mol L‒1 HCl | NH3 | 44.77 μg h-1 cm-2 mgcat.-1 | 16.23 | [ |
| Co-TCPP | 0.1 mol L‒1 HCl | NH3 | 28.3 μg h-1 cm-2 mgcat.-1 | 11.58 | [ |
| SO3-MOF-808 | 0.5 mol L‒1 Na2SO4 | NH3 | 97 μmol cm-2 h | 87.5 | [ |
| NiFeRu-MIL-53 | 1 mol L‒1 KOH | NH3 | 62.39 mg h-1 cm-2 | 100 | [ |
Fig. 11. (a) The synthetic process of NiFeRu-MIL-53. Potential-dependent NH3 yield rate (b) and FENH3 (c) of NiFe-MIL-53 and NiFeRu-MIL-53. In-situ Raman spectra of NiFe-MIL-53 (d) and NiFeRu-MIL-53 (e). Reproduced with permission [250]. Copyright 2024, American Chemical Society. (f) The structure of SO3-MOF-808. (g) FE to ammonia, FE to nitrite, and selectivity toward ammonia. (h) Ammonia production rates. Reproduced with permission [251]. Copyright 2024, American Chemical Society.
Fig. 13. The ground state structure of Cr4, S = 3 spin state (a) and S = 13 spin state (b). Reproduced with permission [264]. Copyright 2016, American Chemical Society. (c) The electronic coupling between Fe and Ni in Fe2Ni-MIL-88B. Reproduced with permission [265]. Copyright 2021, Elsevier Ltd. Mechanism diagram of electron orbital coupling induced by interfacial BEF: free energy difference (d) and energy band diagram (e). Reproduced with permission [267]. Copyright 2024, Elsevier Ltd.
Fig. 14. (a) Structure diagrams of Fe2(DOBDC) and Fe2Cl2(BBTA). PDOS before (b) and after (c) Mo doping. (d) PDOS of Mo-*N1-N2 in *NN. (e) The charge transfer chain. Reproduced with permission [271]. Copyright 2022, American Chemical Society.
Fig. 16. (a,b) FEs and corresponding NH3 yields. (c) Free energy diagram of electrocatalytic NO3RR pathway. Reproduced with permission [275]. Copyright 2024, American Chemical Society. (d) Visual representation of a V-shaped trinuclear cluster. (e) PDOS of the d orbitals of the catalytic active center. Reproduced with permission [147]. Copyright 2021, Royal Society of Chemistry. (f) The synthesis of Ni0.8Fe0.2-MOF-B. Reproduced with permission [278]. Copyright 2022, Wiley‐VCH. (g) 3D framework of Fe2M-MOF. Reproduced with permission [15]. Copyright 2023, Wiley‐VCH. (h) Coordination environment. Reproduced with permission [282]. Copyright 2024, American Chemical Society.
|
| [1] | 向家奇, 陈立妙, 陈善勇, 刘又年. 电化学二氧化碳还原中的碱阳离子效应[J]. 催化学报, 2026, 80(1): 38-58. |
| [2] | 时文博, 朱凯, 付小刚, 刘陈红, 原洋, 潘家梁, 张庆, 白正宇. 双位点限域策略调控Fe-N-C电子结构提升质子交换膜燃料电池氧还原性能[J]. 催化学报, 2026, 80(1): 293-303. |
| [3] | 门亚娜, 矫宇州, 郑妍星, 王晓晏, 陈胜利, 李朋. 质子型离子液体调控分子铁催化剂氧还原活性的pH依赖性及其电化学界面起源[J]. 催化学报, 2026, 80(1): 258-269. |
| [4] | 余成文, 梁乐程, 穆张岩, 尹绍祺, 刘欲文, 陈胜利. FeNC层稳定的L10-PtFe金属间纳米颗粒用于高效氧还原[J]. 催化学报, 2025, 75(8): 125-136. |
| [5] | 李晨浩, 王昊, 王卫卫, 白烁, 公忠彬, 桑勤勤, 张雨晴, 霍锋, 刘艳荣. PtCu纳米枝晶催化剂及其增强质子交换膜燃料电池稳定性研究[J]. 催化学报, 2025, 73(6): 322-333. |
| [6] | 刘利芳, 肖晔珺, 郭向阳, 金盛烨, 章福祥. 基于过饱和策略的MOFs晶面可控合成用于理解本征晶面效应[J]. 催化学报, 2025, 73(6): 153-158. |
| [7] | 余维来. 共享金属节点的核壳型金属有机框架促进界面电荷转移[J]. 催化学报, 2025, 73(6): 8-11. |
| [8] | 姚瑶, 徐菊萍, 邵敏华. 多晶金表面上析氢反应与氧还原反应的竞争[J]. 催化学报, 2025, 73(6): 271-278. |
| [9] | 李思明, 孙恩样, 魏鹏飞, 赵微, 裴随珠, 陈颖, 杨洁, 陈绘丽, 尹熙, 王旻, 李亚伟. 浸渍离子液体于多孔Fe-N-C电催化剂以改善聚合物电解质燃料电池电极动力学与质量传输[J]. 催化学报, 2025, 72(5): 277-288. |
| [10] | 李如硕, 班涛, 赵丹凤, 胡发杰, 林璟, 黄秀兵, 陶志平, 王戈. 缺陷UiO-66(Ce)负载的具有优化微环境和电子态的镍纳米颗粒用于高效烯烃加氢反应[J]. 催化学报, 2025, 72(5): 344-358. |
| [11] | 胡婷婷, 冯盼盼, 褚宏旗, 高腾, 刘福胜, 周卫. 缺陷型介孔MIL-125(Ti)@BiOCl S 型异质结中内建电场的调控机制及光催化性能研究[J]. 催化学报, 2025, 69(2): 123-134. |
| [12] | 郭昊天, 赵路路, 刘欣宇, 李晶, 王鹏飞, 柳宗琳, 王琳琳, 舒杰, 伊廷锋. 静电纺丝技术与MOFs结合: 推动高性能锌空气电池发展[J]. 催化学报, 2025, 79(12): 32-67. |
| [13] | 刘保发, 潘未接, 黄志洋, 赵熠, 罗祖洋, 塔伊尔詹•泰勒•伊西姆詹, 王宝, 杨秀林. F-N共掺杂调控多孔碳实现锌空气电池5300 h超稳定ORR催化[J]. 催化学报, 2025, 79(12): 100-111. |
| [14] | 李可欣, 袁浩, 杨祖保, 胡准. MOF包埋衍生策略缓释氧物种增强甲烷选择性氧化的活性与选择性: 基于瞬时原位红外的研究[J]. 催化学报, 2025, 78(11): 202-214. |
| [15] | 殷述虎, 程晓阳, 韩瑜, 朱挺, 于忠卫, 黄蕊, 徐骏, 姜艳霞, 孙世刚. 近邻调控钌单原子位点优化Fe-N4空间畸变增强酸性氧还原反应[J]. 催化学报, 2025, 78(11): 343-353. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||