催化学报 ›› 2026, Vol. 81: 69-96.DOI: 10.1016/S1872-2067(25)64906-0

• 综述 • 上一篇    下一篇

迈向高效选择性加氢: 单原子催化剂的作用

李沛坤a, 吕井辉a(), 赵以勇a, 吴汉a, 张祥豪a, 陆倩楠a, Yizhi Xiangb, Blaž Likozarc, Matej Hušc,d, Adriana Zaleska-Medynskae, 李小年a()   

  1. a 浙江工业大学化学工程学院, 绿色化学合成与转化国家重点实验室, 催化剂表界面科学与工程浙江省重点实验室, 浙江杭州 310032, 中国
    b 密苏里大学化学工程与生物工程系, 密苏里哥伦比亚, 美国
    c 斯洛文尼亚国家化学研究所, 催化与化学反应工程系, 卢布尔雅那, 斯洛文尼亚
    d 斯洛文尼亚技术文化协会, 卢布尔雅那, 斯洛文尼亚
    e 格但斯克大学化学学院, 环境技术系, 格但斯克, 波兰
  • 收稿日期:2025-07-15 接受日期:2025-09-28 出版日期:2026-02-18 发布日期:2025-12-26
  • 通讯作者: *电子信箱: lyujh@zjut.edu.cn (吕井辉),xnli@zjut.edu.cn (李小年).
  • 基金资助:
    国家自然科学基金(NSFC22278368);国家自然科学基金(NSFC22578399);浙江省自然科学基金(LY21B060006);浙江工业大学与工业之间的技术转让项目(KYY-ZH-20240069);榆林清洁能源创新研究院能源变革科技项目(E412022701)

Towards highly efficient selective hydrogenation: The role of single-atom catalysts

Peikun Lia, Jinghui Lyua(), Yiyong Zhaoa, Han Wua, Xianghao Zhanga, Qiannan Lua, Yizhi Xiangb, Blaž Likozarc, Matej Hušc,d, Adriana Zaleska-Medynskae, Xiaonian Lia()   

  1. a College of Chemical Engineering, State Key Laboratory of Green Chemical Synthesis and Conversion, Zhejiang Key Laboratory of Surface and Interface Science and Engineering for Catalysts, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
    b Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA
    c National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering, SI-1000 Ljubljana, Slovenia
    d Association for Technical Culture of Slovenia (ZOTKS), SI-1000 Ljubljana, Slovenia
    e Department of Environmental Technology, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdansk 80-308, Poland
  • Received:2025-07-15 Accepted:2025-09-28 Online:2026-02-18 Published:2025-12-26
  • Contact: *E-mail: lyujh@zjut.edu.cn (J. Lyu),xnli@zjut.edu.cn (X. Li).
  • About author:Peikun Li (College of Chemical Engineering, Zhejiang University of Technology (ZJUT)) is currently pursuing his Master’s degree under the supervision of Professor Jinghui Lyu. His research is broadly centered on industrial catalysis, with an emphasis on the rational design and synthesis of advanced catalytic materials, catalytic reaction engineering, and the development of transition metal-based catalytic systems. He has a particular interest in zeolite, single-atom catalysts, and electrocatalytic processes, where he seeks to unravel structure-activity relationships and establish strategies for improving catalytic efficiency, selectivity, and long-term stability.
    Jinghui Lyu (College of Chemical Engineering, Zhejiang University of Technology (ZJUT)) received his B.S. in 2006 and Ph.D degree in 2014 from ZJUT under the supervision of Prof. Xiaonian Li. He worked as a technology and engineering researcher (2006-2008) and as a postdoctoral fellow (2014-2016), contributing to the industrialization of several lab-scale catalytic technologies. From 2019 to 2020, he was a visiting scholar at Western University, Canada. His research focuses on heterogeneous catalysis, particularly the design and application of porous materials and supported metal catalysts for green chemical processes, including selective hydrogenation, oxidation reactions, and continuous flow catalysis. He received First Prize of the National Ministry of Education Technological Invention Award for green catalytic hydrogenation processes, Second Prize of Zhejiang Provincial Science and Technology Progress Award and the Second Prize of the China Chemical Society Science and Technology Progress Award for contributions to the continuous and miniaturized chemical processes. The green hydrogenation process and catalyst, along with the related research on continuous and miniaturized chemical processes have already been industrialized. He has led multiple national research projects in China and successfully transferred patented catalytic technologies to industrial practice.
    Xiaonian Li (College of Chemical Engineering, Zhejiang University of Technology (ZJUT)), PhD, Professor, is a doctoral supervisor at ZJUT, a Fellow of the Canadian Academy of Engineering, and former President of the university. He received his PhD from the Chinese Academy of Sciences in 1998 and conducted postdoctoral research at the University of British Columbia and Oak Ridge National Laboratory. His research focuses on industrial catalysis and green chemical processes. He has received the National Technological Invention Second Prize and holds several academic roles, including member of the State Council Academic Evaluation Committee and executive director of the Chemical Industry and Engineering Society of China.
  • Supported by:
    National Natural Science Foundation of China(NSFC22278368);National Natural Science Foundation of China(NSFC22578399);Zhejiang Provincial Natural Science Foundation(LY21B060006);Technology Transfer Project between Zhejiang University of Technology and Industry(KYY-ZH-20240069);Energy Revolution S &T Program of Yulin Innovation Institute of Clean Energy(E412022701)

摘要:

选择性加氢在诸多化学过程和环境应用中都具有至关重要的作用, 因为在这些反应中, 只有对反应活性和选择性的精准把控, 才能实现高纯度产物的高效制备. 单原子催化剂(SACs)由于其金属位点以原子级分散的独特结构, 能够在一定程度上兼具均相催化和多相催化的优势, 被视为一种具有颠覆性的催化平台. 它们不仅在选择性加氢反应中展现出极高的催化效率和反应选择性, 而且能够大幅减少关键稀缺金属资源的使用, 从而在推动绿色化学和可持续发展方面展现出广阔前景.

本文系统综述了近年来单原子催化剂在选择性加氢反应中的研究进展, 重点分析了其独特的催化特性以及影响催化性能的关键因素. SACs凭借其金属位点以原子级分散的独特结构, 在均相和非均相催化剂之间架起了桥梁, 既兼具均相催化的高选择性, 又保留了非均相催化在分离和稳定性上的优势, 从而成为选择性加氢领域的一个变革性平台. 根据金属单原子位点的不同, 归纳了SACs在选择性加氢中的应用进行, 包括贵金属SACs、非贵金属SACs、双金属SACs以及单原子合金, 它们在炔烃、芳香族化合物、酚类、醛类物质和CO2选择性加氢反应中均表现出优异的性能. 介绍了SACs的发展历史, 总结了多种典型的合成策略与配位环境调控方法, 详细叙述了SACs的原子建模并重点剖析了建模过程中潜在的不确定性来源, 深层挖掘了H2的活化机理, 揭示了单原子位点在氢均裂与异裂机制中的独特作用, 还对不同单金属SACs在多类反应体系中的催化活性与适用范围进行了对比性讨论. 在方法上力求突破单一维度的总结, 提供了一种整体化、多学科交叉的视角, 强调了结构-活性关系、反应机理路径以及前瞻性挑战的重要性. 此外, 特别关注了未来发展中可能面临的挑战, 如何在保持高活性与高选择性的同时实现催化剂结构的可控合成, 如何通过配位环境精细调控进一步优化性能, 以及如何解决规模化制备与工业放大过程中的稳定性与可重复性问题. 本文旨在为可持续催化剂设计提供一幅前瞻性的蓝图, 在这一过程中, SACs不仅展现出在资源高效利用方面的潜力, 也为减少关键稀缺金属的使用、推动绿色化学与清洁能源技术的发展提供了重要契机.

在未来, 推动单原子催化剂实际应用需聚焦五方面: 先进原位表征、可规模化高负载合成、通用多金属载体平台、高通量筛选金属-载体协同效应, 以及可持续前驱体与循环利用策略. 期望这篇综述能够为从事相关研究的化学家和工程师提供深刻的参考资料, 帮助他们在开发高效的单原子催化剂方面取得新的突破.

关键词: 单原子催化, 选择加氢, 氢气活化, 催化剂设计, 原子尺度建模

Abstract:

Selective hydrogenation is crucial in various chemical processes and environmental applications, where precise control of reactivity and selectivity is essential for the efficient production of high-purity products. Single-atom catalysts (SACs), with atomically dispersed metal sites, could bridge homogeneous and heterogeneous catalysis and have emerged as a transformative platform for highly efficient selective hydrogenation with minimal use of critical raw materials as catalysts. This review explores the latest advancements in this cutting-edge area. Specifically, we analyze the structure-activity relationships, such as catalytic properties and mechanisms that determine the reactivity and selectivity of such catalytic systems. Furthermore, we discuss challenges, including stability, synthesis scalability, coordination environment tuning, atomistic modeling, and mechanistic insights, while identifying research opportunities for optimizing SACs performance. If these challenges are addressed, SACs hold the potential to revolutionize selective hydrogenation processes, offering sustainable and highly efficient catalytic solutions for industrial applications.

Key words: Single atom catalysis, Selective hydrogenation, H2 activation, Catalyst design, Atomistic modeling