催化学报 ›› 2026, Vol. 80: 270-281.DOI: 10.1016/S1872-2067(25)64840-6

• 论文 • 上一篇    下一篇

双相Cu-Co/CoO异质结通过中间体传递实现高效串联硝酸盐电还原

杜斌杰, 肖宇航, 谭骁鸿, 何炜东, 郭莹莹, 崔浩(), 王成新()   

  1. 中山大学材料科学与工程学院, 广东广州 510275
  • 收稿日期:2025-06-20 接受日期:2025-08-26 出版日期:2026-01-18 发布日期:2026-01-05
  • 通讯作者: 崔浩,王成新
  • 基金资助:
    国家自然科学基金(52471246);国家自然科学基金(U24A20526);国家自然科学基金(52432007);广东省自然科学基金(2025A1515012816);松山湖科学城显微科学与技术开放基金(202401201)

Dual-phase Cu-Co/CoO heterojunctions for efficient tandem nitrate electroreduction via smooth intermediate handover

Binjie Du, Yuhang Xiao, Xiaohong Tan, Weidong He, Yingying Guo, Hao Cui(), Chengxin Wang()   

  1. School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
  • Received:2025-06-20 Accepted:2025-08-26 Online:2026-01-18 Published:2026-01-05
  • Contact: Hao Cui, Chengxin Wang
  • Supported by:
    National Natural Science Foundation of China(52471246);National Natural Science Foundation of China(U24A20526);National Natural Science Foundation of China(52432007);Natural Science Foundation of Guangdong Province(2025A1515012816);Open Fund of the Microscopy Science and Technology, Songshan Lake Science City(202401201)

摘要:

工业废水、农业施肥及生活污水的大量排放, 导致硝酸盐污染已成为全球性的水环境问题. 利用电催化技术将硝酸根离子(NO3‒)还原为氨(NH3)被视为一种具有潜力的可持续治理策略. 与氮还原反应(NRR)相比, 硝酸根还原反应(NO3RR)因NO3‒离子较高的溶解度和更低的N‒O键解离能, 表现出更优的热力学可行性. 然而, NO3RR涉及多个质子与电子转移的复杂反应路径, 在实际应用中仍面临挑战. 尤其在较高电流密度(如500 mA cm‒2)下, 析氢反应(HER)等竞争性副反应会显著降低NH3的选择性, 这些动力学限制与副反应共同构成了发展高效NO3RR系统的主要障碍.

近年来, 串联电催化作为一种新兴策略, 为实现高选择性电化学硝酸根还原合成氨提供了极具潜力的解决方案. 该过程通过将反应步骤分解于不同活性位点上进行, 理论上可有效降低反应能垒、提高目标产物选择性. 然而, 现有串联催化体系在实际应用中仍面临显著瓶颈: 关键中间体(如NO2-)在空间分离的活性位点之间传输缓慢, 以及不同活性位点间的反应势垒不匹配, 导致催化效率受限. 尤其突出的是, 高法拉第效率通常仅能在较窄的电位窗口内实现, 严重制约了其实际应用潜力. 本文设计了一种Cu-Co/CoO双相异质结催化剂, 通过精准调控活性位点微环境及构建原子级异质界面, 实现高效NO3-至NH3转化. 采用低压退火与Cu掺杂策略, 将Co3O4纳米颗粒转变为Cu掺杂的Co/CoO双相异质结. 该结构提供了空间分离但功能协同的催化位点, 丰富的原子级界面促进中间体快速跨相传输, 从而优化串联反应路径. Cu元素的引入调控了Co与CoO的电子结构, 加速了反应动力学, 并在负电位下抑制HER, 提高NH3选择性. 所制备的Cu-Co/CoO催化剂性能显著优于单相对比样, 在-0.2~-0.8 V (vs. RHE)宽电位范围内可实现超过85%的NH3法拉第效率, NH3产率达到27.3 mmol h-1 mgcat-1, 在-0.8 V时电流密度为0.58 A cm-2. 原位光谱研究结果表明, NO3RR反应路径分步进行: NO3-在Cu掺杂的CoO位点优先还原为NO2-, 继而于Cu掺杂的Co区域进一步还原为NH3. 高度集成的微界面保障了NO2-的快速连续迁移, 从而实现高效串联催化. 此外, 将催化剂应用于Zn-NO3-电池体系, 该电池具有1.409 V (vs. Zn)的开路电压, 以及9.7 mW cm-2的功率密度, 同时能保持长时间的循环稳定性, 证明了其兼具高速率合成氨与发电能力, 为可持续氨生产提供了一种自驱动能源策略.

综上, 本研究通过构建Cu-Co/CoO双相异质结电催化剂, 利用其协同串联机制, 在宽电位窗口内实现了高NH3产率与法拉第效率, 为高性能NO3RR催化剂的设计提供了新思路.

关键词: 界面工程, 双相异质结, 硝酸盐还原, 串联电催化, 宽电位窗口

Abstract:

Tandem electrocatalysis offers considerable potential for selectively converting nitrate ions (NO3-) to ammonia (NH3) via electrochemical reduction, yet its practical application is often hampered by sluggish nitrite ions (NO2-) intermediate transfer between spatially separated active sites and mismatched reaction potentials, which together constrain conversion efficiency and limit high Faradaic efficiency (FE) to a narrow operating window. Herein, we report a rationally designed dual-phase Cu-doped Co/CoO (Cu-Co/CoO) heterojunction, featuring spatially distinct yet synergistic active sites and abundant atomic-scale heterointerfaces that enable accelerated tandem catalysis. Mechanistic investigations reveal that the Cu-doped CoO domain predominantly catalyzes the reduction of NO3- to NO2-, which is rapidly transferred across the heterointerface to the Cu-doped Co domain for further hydrogenation to NH3. As a result, the Cu-Co/CoO catalyst achieves a high FE exceeding 85% and sustains high NH3 yields across a broad potential range. Notably, the catalyst achieves a remarkable NH₃ yield of 27.3 mmol h-1 mgcat-1 and an NH3 partial current density of 0.58 A cm-2 at -0.8 V (vs. RHE). Integration into a Zn-NO3- battery system further enables simultaneous high-rate NH3 production and power output. This work establishes a viable methodology for engineering high-performance tandem electrocatalysts and offers new insights into interfacial engineering for renewable NH3 synthesis.

Key words: Interfacial engineering, Dual-phase heterojunction, Nitrate reduction, Tandem electrocatalysis, Wide potential window