催化学报 ›› 2025, Vol. 79: 148-161.DOI: 10.1016/S1872-2067(25)64839-X

• 论文 • 上一篇    下一篇

一种用于高效氯酚废水处理的环保型光催化耦合电容去离子系统

郑子叶a, 任怡a, 代孟a,b, 李红盛a,b, 崔会珍a, 王森c, 王曙光a,b,d, 何作利a,b,*()   

  1. a山东大学环境科学与工程学院, 山东省多介质复合污染协同治理重点实验室, 山东省环境过程与健康危害重点实验室, 山东青岛266237
    b山东大学威海工业技术研究院, 山东威海264209
    c山东大学微生物技术研究院, 微生物改造技术全国重点实验室, 山东青岛266237
    d山东大学环境科学与工程学院, 中法生态环保产业技术研究院, 山东青岛266237
  • 收稿日期:2025-07-02 接受日期:2025-08-25 出版日期:2025-12-05 发布日期:2025-10-27
  • 通讯作者: 何作利
  • 基金资助:
    国家自然科学基金(22278245);山东省泰山学者特聘专家(tstp20230604);山东大学青年学者未来计划(61440089964189);有机化合物污染控制工程教育部重点实验室基金(20190202)

An eco-friendly photocatalytic coupling capacitive deionization system for efficient chlorophenol wastewater treatment

Ziye Zhenga, Yi Rena, Meng Daia,b, Hongsheng Lia,b, Huizhen Cuia, Sen Wangc, Shuguang Wanga,b,d, Zuoli Hea,b,*()   

  1. aShandong Key Laboratory of Synergistic Control of Complex Multi-Media Pollution, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
    bWeihai Research Institute of Industrial Technology of Shandong University, Weihai 264209, Shandong, China
    cState Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, Shandong, China
    dSino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
  • Received:2025-07-02 Accepted:2025-08-25 Online:2025-12-05 Published:2025-10-27
  • Contact: Zuoli He
  • Supported by:
    National Natural Science Foundation of China(22278245);Taishan Scholars Project of Shandong Province(tstp20230604);Shandong University Future Youth Grant Program(61440089964189);Key Laboratory of Organic Compound Pollution Control Engineering (MOE) Foundation, China(20190202)

摘要:

氯酚类污染物广泛存在于焦化、石化及造纸废水中, 其因具有高毒性、持久性和生物累积性, 对生态系统与人类健康构成严重威胁. 现有处理技术(物理吸附、高级氧化、生物降解)普遍存在矿化不彻底、二次污染风险高及规模化成本高等瓶颈. 其中, 传统光催化(PC)技术虽可用于降解氯酚, 但仍面临催化剂回收困难、矿化不彻底、复杂基质下的效率衰减及氯离子(Cl⁻)干扰引发氯化副产物生成等挑战. 电容去离子(CDI)技术通过电极的电吸附作用选择性去除离子, 具有能耗低、电极可再生、同步去除无机盐与带电有机物等优势, 但其单一技术对有机污染物的降解能力有限. 针对上述挑战, 本文提出了光催化-电容去离子(PC-CDI)协同策略, 通过氮化硼/氮化碳(BN/CN) Z型异质结电极构建PC-CDI耦合系统, 旨在实现氯酚的高效降解与深度矿化, 同时阐明Cl⁻去除-污染物富集-自由基降解的协同机制.
本文通过原位煅烧法成功制备了BN/CN异质结电极材料, 并进一步构建了PC-CDI协同反应体系. 高比表面积的多孔BN/CN复合材料促进了电吸附和电荷载流子分离, 从而协同优化了PC和CDI功能. 光电流测试结果表明, BN/CN异质结的构建大幅提高了光催化活性. 这主要归因于Z型异质结的形成有利于电荷的空间分离, 并保持体系中光生载流子的强氧化还原能力. PC-CDI耦合系统在2 h内实现了97.15%的2,4-二氯苯酚降解效率和72.35%的总有机碳(TOC)去除率, 均显著优于单一的PC和CDI体系. 并且, 该耦合系统表现出良好的稳定性(五个循环后效率仍高于95%)以及对多种氯酚衍生物的广泛适用性. 通过自由基捕获实验发现, •OH、1O2、h+和•O2-共同参与PC-CDI降解过程. 此外, 通过密度泛函理论计算, 系统地研究了BN与CN之间界面内建电场诱导的Z型电荷转移机制. 二者的复合使BN/CN中N 2p轨道的能级聚集得更加紧密, 显著优化了光催化过程中的电荷传输特性, 同时改善了CDI过程中的电荷转移动力学. 最后, 本文总结了PC-CDI协同降解机制. 基于BN/CN电极在正负偏压作用下的特性, 耦合体系中的CDI单元通过电吸附将Cl⁻富集于阳极, 实现其空间分离, 有效减轻了其干扰并抑制了氯化副产物的形成. 同时, 通过规避光催化过程中Cl诱导的副反应抑制了氯自由基的产生. 带正电的氯酚污染物的电吸附加速了其向催化位点的扩散, 促进了活性氧驱动的氯酚污染物降解反应.
综上, 本文通过构建PC-CDI耦合系统实现了氯酚污染物的高效降解, 最大限度地降低了氯酚废水处理过程中氯化副产物相关的环境风险, 并阐明了PC-CDI协同反应机制. 本研究将有助于推动利用PC-CDI技术处理氯酚废水, 同时也为实际高盐度废水的处理提供了重要启示.

关键词: 光催化, 氯酚, 电容去离子, 氮化硼, 氮化碳

Abstract:

Since conventional photocatalytic technology fails to achieve complete elimination of chlorophenol contaminants from aqueous environments, this study presents a synergistic photocatalysis-capacitive deionization (PC-CDI) system as an advanced solution for industrial chlorophenol wastewater remediation. The PC-CDI system, employing boron nitride/carbon nitride (BN/CN) heterojunction electrodes, demonstrates exceptional degradation performance toward chlorophenols. The high-surface-area porous BN/CN heterojunction facilitates electro-adsorption and charge carrier separation, thereby synergistically optimizing both photocatalytic (PC) and capacitive deionization (CDI) functionalities. Remarkably, the integrated system achieves a 2,4-DCP degradation efficiency of 97.15% and a 2,4,6-TCP degradation efficiency of 100% in 2 h. The CDI component enables spatial separation through the electro-adsorption of Cl- ions at the anode, effectively mitigating their interference and suppressing chlorinated byproduct formation. Concurrently, the electro-adsorption of positively charged chlorophenol pollutants accelerates their diffusion to catalytic sites, promoting the reactive oxygen species (ROS)-driven degradation of chlorophenol pollutants. The PC-CDI system exhibits robust stability (> 95% efficiency retention over five cycles) and broad applicability across various chlorophenol derivatives. By circumventing Cl--induced side reactions and inhibiting chlorine radical generation during photocatalysis, this strategy minimizes the environmental risks associated with chlorinated byproducts during chlorophenol wastewater treatment. These findings establish the PC-CDI system as a sustainable and eco-friendly technology for industrial wastewater treatment.

Key words: Photocatalysis, Chlorophenols, Capacitive deionization, Boron nitride, C3N4