催化学报 ›› 2025, Vol. 79: 162-173.DOI: 10.1016/S1872-2067(25)64846-7

• 论文 • 上一篇    下一篇

构建Ag单原子和纳米颗粒共修饰的g-C3N4协同等离子体效应实现广谱制氢

詹维洁, 杨楠, 周桐(), 张瑾, 何天威, 柳清菊()   

  1. 云南大学材料与能源学院, 云南省微纳材料与技术重点实验室, 云南昆明650091
  • 收稿日期:2025-07-03 接受日期:2025-08-25 出版日期:2025-12-18 发布日期:2025-10-27
  • 通讯作者: 周桐,柳清菊
  • 基金资助:
    国家重点研发计划(2022YFB3803600);国家自然科学基金(22378346);国家自然科学基金(22368050);云南省重点研发计划(202302AF080002)

Construction of Ag single atoms and nanoparticles co-modified g-C3N4 for synergistic plasma photocatalytic broad-spectrum hydrogen production

Weijie Zhan, Nan Yang, Tong Zhou(), Jin Zhang, Tianwei He, Qingju Liu()   

  1. Yunnan Key Laboratory for Micro/Nano Materials & Technology, Institute of International Rivers and Eco-security, School of Materials and Energy, Yunnan University, Kunming 650091, Yunnan, China
  • Received:2025-07-03 Accepted:2025-08-25 Online:2025-12-18 Published:2025-10-27
  • Contact: Tong Zhou, Qingju Liu
  • Supported by:
    National Key Research and Development Program of China(2022YFB3803600);National Natural Science Foundation of China(22378346);National Natural Science Foundation of China(22368050);Key Research and Development Program of Yunnan Province(202302AF080002)

摘要:

太阳能驱动水分解制氢被认为是实现绿氢可持续生产的关键路径之一, 能够直接将太阳能转化为高能量密度的清洁燃料. 然而, 目前广泛研究的光催化材料仍面临两大瓶颈: 其一是对太阳光谱的利用范围有限, 无法充分吸收和利用长波长可见光及近红外光; 其二是光生载流子在迁移与分离过程中极易复合, 导致实际量子效率显著降低. 这些因素严重制约了整体光能转化效率和规模化应用潜力. 石墨相氮化碳(g-C3N4)因其良好的化学稳定性和可见光响应能力而被广泛研究, 但其光响应范围仅限短波长可见光, 这严重限制了光能的转化效率. 此外, 光催化反应过程中表面反应中间体的吸附/解吸附能垒较高, 导致析氢动力学迟缓. 因此, 开发兼具宽光谱吸收与高效电荷分离能力的新型光催化体系, 对进一步提升光催化效率和推动太阳能高效利用具有重要意义.
近年研究表明, 将单原子催化剂与等离子体纳米颗粒相结合, 不仅能够拓展光谱响应范围, 还能提升活性位点利用率并改善电荷分离效率. 基于此, 本文通过采用原位生长策略, 在未修饰的g-C3N4 (UCN)上成功构建了Ag单原子(Ag SAs)与Ag纳米颗粒(Ag NPs)共负载的双活性中心光催化剂. 优化后的样品(Ag-UCN-3, 3代表3 wt%的Ag理论负载量)在420 nm单色光照射下, 析氢速率达22.11 mmol/g/h, 表观量子效率达到10.16%. 此外, 在700 nm的近红外光激发下, Ag-UCN-3仍能保持633.57 μmol/g/h的析氢速率, 充分展现了其优异的宽光谱光催化性能. X-射线光电子能谱、飞秒瞬态吸收光谱、热成像以及密度泛函理论计算表明, Ag SAs与Ag NPs在反应过程中均可作为活性位点, 共同优化了UCN表面对氢中间体(H*)的吸脱附行为, 显著降低析氢反应的吉布斯自由能, 从而有效促进了质子还原动力学. 值得注意的是, 原子分散的Ag SAs大幅提升了活性位点的数量, 而Ag NPs的局域表面等离子体共振效应不仅将光响应范围有效拓展至近红外区域, 还可通过非辐射衰减产生热电子, 并进一步诱导光热效应以提升反应界面局部温度, 从而加速传质与反应过程. 同时, Ag NPs还与UCN形成肖特基结, 有效促进光生电子向UCN导带的定向迁移, 显著提高电荷分离效率.
综上, 本研究通过构建Ag SAs/Ag NPs/g-C3N4复合结构, 成功实现了广谱光吸收、高效电荷分离以及表面反应动力学的协同优化, 有效克服了g-C3N4基催化剂在长波光照下响应不足和载流子复合严重的局限, 为高效光催化剂的设计提供了新的思路与实验依据.

关键词: 石墨相氮化碳, 银纳米颗粒, 银单原子, 局域表面等离子体共振效应, 热电子

Abstract:

Solar-driven water splitting has emerged as a promising route for sustainable hydrogen generation, however, developing broad-spectrum responsive photocatalysts remains a challenge for achieving efficient solar-to-hydrogen conversion. Here, we demonstrate a g-C3N4 -based (UCN) catalyst with dispersed Ag single atoms (Ag SAs) and Ag nanoparticles (Ag NPs) for synergistically broad-spectrum photocatalytic hydrogen evolution. Experimental and theoretical results reveal that both Ag SAs and Ag NPs serve as active sites, with the Schottky junction between Ag NPs and g-C3N4 effectively promoting charge separation, while Ag NPs induce localized surface plasmon resonance, extending the light response range from visible to near-infrared regions. The optimized catalyst Ag-UCN-3 exhibits a hydrogen evolution rate as high as 22.11 mmol/g/h and an apparent quantum efficiency (AQE) of 10.16% under 420 nm light illumination. Notably, it still had a high hydrogen evolution rate of 633.57 μmol/g/h under 700 nm irradiation. This work unveils dual active sites engineering strategy that couples Ag SAs and Ag NPs with plasma and hot electrons, offering a new strategy for designing high-performance solar-driven energy systems.

Key words: g-C3N4, Ag nanoparticles, Ag single atoms, Localized surface plasmon resonance, Hot electrons