Chinese Journal of Catalysis ›› 2021, Vol. 42 ›› Issue (12): 2206-2215.DOI: 10.1016/S1872-2067(20)63766-4
• Articles • Previous Articles Next Articles
Steffen Cychya, Sebastian Lechlera, Zijian Huanga, Michael Braunb, Ann Cathrin Brixc, Peter Blümlerd, Corina Andronescub, Friederike Schmidd, Wolfgang Schuhmannc, Martin Muhlera,*()
Received:
2020-12-23
Accepted:
2020-12-23
Online:
2021-12-18
Published:
2021-05-06
Contact:
Martin Muhler
About author:
* E-mail: muhler@techem.rub.deSteffen Cychy, Sebastian Lechler, Zijian Huang, Michael Braun, Ann Cathrin Brix, Peter Blümler, Corina Andronescu, Friederike Schmid, Wolfgang Schuhmann, Martin Muhler. Optimizing the nickel boride layer thickness in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in glycerol oxidation[J]. Chinese Journal of Catalysis, 2021, 42(12): 2206-2215.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(20)63766-4
Fig. 1. (a) Photograph of the used setup with the homemade lid which enables tilt correction of the BHE over the IRE. (b) Scheme of the BHE placed above the Ge-IRE. By pumping electrolyte through the middle of the BHE, a radial flow profile is obtained between BHE and IRE. The catalyst is immobilized on a glassy carbon ring (black). Formed products and depleted reactants are detected in the evanescent wave above the IRE. In this configuration, a cylindric volume element is formed under the BHE. The relative distance between BHE and IRE is exaggerated for clarity.
Fig. 2. Simulation of the flow conditions in the 50 µm thin electrolyte layer underneath the BHE at a flow rate of 5 µL min-1 calculated with finite elements using COMSOL Multiphysics 5.5. (a) 2D simulation through one half of the BHE. (b) Magnification of the flow profile close to the borehole. The yellow curve indicates the velocity profile in radial direction at a height of 25 µm.
Fig. 3. LSM images of the different loadings on glassy carbon disks with a diameter of 8 mm. The magnified images correspond to areas of 1063 µm times 1418 µm.
Fig. 4. CVs as a function of the different NixB loadings (210, 52, 13 µg cm-2) in 1 M KOH (a) and b)) as well as 0.1 M glycerol/1 M KOH (c) and (d)). (a) 10 cycles recorded as conditioning with 100 mV s-1 between 1.04 to 1.64 V vs. RHE. The following CVs were obtained at lower scan rates of 10 mV s-1 ranging to a higher upper potential of 1.84 V vs. RHE. One scan was recorded in (b), five in (c) and one in (d). The CVs (a) to (c) were recorded at 1600 rpm; (d) was recorded under static conditions.
Fig. 5. Current density response as a function of time to the potential profile where 100 mV potential steps (10 min each) ranging from 1.3 V to 1.8 V vs. RHE were applied intermitted by a 4 min rinsing step at 1.0 V where no GOR is expected. The distance between BHE and IRE was set to 50 µm and a flow rate of 5 µL min-1 was applied. Corresponding spectra are shown in Fig. 6.
Fig. 6. Spectra recorded during the potential step profile shown in Fig. 5. (a) Recorded spectra from 1.3 to 1.8 V vs. RHE for a catalyst loading of 210 µg cm-2, (b) of 52 µg cm-2 and (c) of 13 µg cm-2. Solid lines represent the last spectra during each step (recorded from 8 to 9.5 min during each step) and dashed lines the last spectrum during the rinsing step after the respective elevated potential step (recorded from 2 to 3.5 min during each rinsing step). Positive (upwards pointing) bands are caused by formed species and consumed species (glycerol) are represented by negative bands due to the log(R-1) scale. F is formate, GCol is glycolate, C is carbonate, Ox is oxalate and G is glycerol.
Sample | Loading µg cm-1 | ΣSi/% | Δ/% |
---|---|---|---|
First | 210 | 96.91 | 3.09 |
52 | 94.15 | 5.85 | |
13 | 90.26 | 9.74 | |
Second | 210 | 95.47 | 4.53 |
52 | 92.82 | 7.18 | |
13 | 88.72 | 11.27 |
Table 1 Sum of the selectivities for samples 1 and 2 of the different catalyst loadings and difference to 100%.
Sample | Loading µg cm-1 | ΣSi/% | Δ/% |
---|---|---|---|
First | 210 | 96.91 | 3.09 |
52 | 94.15 | 5.85 | |
13 | 90.26 | 9.74 | |
Second | 210 | 95.47 | 4.53 |
52 | 92.82 | 7.18 | |
13 | 88.72 | 11.27 |
Fig. 7. Chronoamperometric data obtained for HPLC analysis of electrolyzed 0.1 M glycerol in 1 M KOH electrolyte over NixB at 1.8 V for 2 h. The insert shows a zoom of the first 10 min.
Fig. 8. Conversion of glycerol determined via HPLC analysis of the pumped electrolyte during the chronoamperometric measurements for catalyst loadings of 210, 52 and 13 µg cm-2 shown in Fig. 7 of two different samples obtained for 30 min each. Acquisition started after 1 h pumping time.
[1] |
S. E. Hosseini, M. A. Wahid, Renew. Sust. Energy Rev., 2016, 57, 850-866.
DOI URL |
[2] |
H. B. Tao, Y. Xu, X. Huang, J. Chen, L. Pei, J. Zhang, J. G. Chen, B. Liu, Joule, 2019, 3, 1498-1509.
DOI URL |
[3] |
M. Ayoub, A. Z. Abdullah, Renew. Sust. Energy Rev. 2012, 16, 2671-2686.
DOI URL |
[4] |
M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, C. Della Pina, Angew. Chem. Int. Ed., 2007, 46, 4434-4440.
DOI URL |
[5] |
Y. Zhou, Y. Shen, J. Piao, ChemElectroChem, 2018, 5, 1636-1643.
DOI URL |
[6] |
C. Coutanceau, S. Baranton, WIREs: Energy Environ., 2016, 5, 388-400.
DOI URL |
[7] |
M. S. E Houache, K. Hughes, E. A. Baranova, Sustain. Energy Fuels, 2019, 3, 1892-1915.
DOI URL |
[8] |
M. S. Faber, S. Jin, Energy Environ. Sci., 2014, 7, 3519-3542.
DOI URL |
[9] |
L. Cui, W. Zhang, R. Zheng, J. Liu, Chem. Eur. J., 2020, 26, 11661-11672.
DOI URL |
[10] |
L. Han, S. Dong, E. Wang, Adv. Mater., 2016, 28, 9266-9291.
DOI URL |
[11] |
B. Habibi, N. Delnavaz, RSC Adv. 2016, 6, 31797-31806.
DOI URL |
[12] |
M. T. Bender, X. Yuan, K.-S. Choi, Nat. Commun., 2020, 11, 4594.
DOI URL |
[13] |
Y. Kwon, Y. Y. Birdja, I. Spanos, P. Rodriguez, M. T. M. Koper, ACS Catal., 2012, 2, 759-764.
DOI URL |
[14] |
Y. Kwon, T. J. P Hersbach, M. T. M. Koper, Top. Catal., 2014, 57, 1272-1276.
DOI URL |
[15] |
V. L. Oliveira, C. Morais, K. Servat, T. W. Napporn, G. Tremiliosi-Filho, K. B. Kokoh, J. Electroanal. Chem., 2013, 703, 56-62.
DOI URL |
[16] |
R. M. Sandrini, J. R. Sempionatto, E. Herrero, J. M. Feliu, J. Souza-Garcia, C. A. Angelucci, Electrochem. Commun., 2018, 86, 149-152.
DOI URL |
[17] |
J. Schnaidt, M. Heinen, D. Denot, Z. Jusys, R. J. Behm, J. Electroanal. Chem., 2011, 661, 250-264.
DOI URL |
[18] |
M. Simões, S. Baranton, C. Coutanceau, Appl. Catal. B, 2010, 93, 354-362.
DOI URL |
[19] |
L. Huang, J.-Y. Sun, S.-H. Cao, M. Zhan, Z.-R. Ni, H.-J. Sun, Z. Chen, Z.-Y. Zhou, E. G. Sorte, Y. J. Tong, S. G. Sun, ACS Catal., 2016, 6, 7686-7695.
DOI URL |
[20] |
C. Dai, L. Sun, H. Liao, B. Khezri, R. D. Webster, A. C. Fisher, Z. J. Xu, J. Catal., 2017, 356, 14-21.
DOI URL |
[21] |
Y. Kwon, K. J. P Schouten, M. T. M. Koper, ChemCatChem, 2011, 3, 1176-1185.
DOI URL |
[22] |
Y. Kwon, M. T. M. Koper, Anal. Chem., 2010, 82, 5420-5424.
DOI URL |
[23] |
S. Sun, L. Sun, S. Xi, Y. Du, M. U Anu Prathap, Z. Wang, Q. Zhang, A. Fisher, Z. J. Xu, Electrochim. Acta, 2017, 228, 183-194.
DOI URL |
[24] |
C. Zhu, B. Lan, R.-L. Wei, C.-N. Wang, Y.-Y. Yang, ACS Catal., 2019, 9, 4046-4053.
DOI URL |
[25] |
J.-T. Li, Z.-Y. Zhou, I. Broadwell, S.-G. Sun, Acc. Chem. Res., 2012, 45, 485-494.
DOI URL |
[26] | M. Osawa, in: Handbook of Vibrational Spectroscopy, J. M. Chalmers, P. R. Griffiths, Eds., Wiley, Chichester, 2002. |
[27] |
Y.-Y. Yang, J. Ren, H.-X. Zhang, Z.-Y. Zhou, S.-G. Sun, W.-B. Cai, Langmuir, 2013, 29, 1709-1716.
DOI URL |
[28] | C. Korzeniewski, in: Advances in Electrochemical Sciences and Engineering, R. C. Alkire, D. M. Kolb, J. Lipkowski, P. N. Ross, Eds., Wiley, 2006, 233-268. |
[29] |
D. Hiltrop, J. Masa, A. J. R Botz, A. Lindner, W. Schuhmann, M. Muhler, Anal. Chem., 2017, 89, 4367-4372.
DOI PMID |
[30] |
S. Cychy, D. Hiltrop, C. Andronescu, M. Muhler, W. Schuhmann, Anal. Chem., 2019, 91, 14323-14331.
DOI URL |
[31] |
M. Heinen, Y. X. Chen, Z. Jusys, R. J. Behm, Electrochim. Acta, 2007, 52, 5634-5643.
DOI URL |
[32] |
Y. X. Chen, M. Heinen, Z. Jusys, R. J. Behm, Angew. Chem. Int. Ed., 2006, 45, 981-985.
DOI URL |
[33] |
V. K. Puthiyapura, W.-F. Lin, A. E. Russell, D. J. L. Brett, C. Hardacre, Top. Catal., 2018, 61, 240-253.
DOI PMID |
[34] |
J. Masa, I. Sinev, H. Mistry, E. Ventosa, M. de La Mata, J. Arbiol, M. Muhler, B. Roldan Cuenya, W. Schuhmann, Adv. Energy Mater., 2017, 7, 1700381.
DOI URL |
[35] |
N. E. de Souza, J. F. Gomes, G. Tremiliosi-Filho, J. Electroanal. Chem., 2017, 800, 106-113.
DOI URL |
[36] |
D. Mellmann, P. Sponholz, H. Junge, M. Beller, Chem. Soc. Rev., 2016, 45, 3954-3988.
DOI PMID |
[1] | Li Zhu, Yiyang Lin, Kang Liu, Emiliano Cortés, Hongmei Li, Junhua Hu, Akira Yamaguchi, Xiaoliang Liu, Masahiro Miyauchi, Junwei Fu, Min Liu. Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products [J]. Chinese Journal of Catalysis, 2021, 42(9): 1500-1508. |
[2] | Rajender Boddula, Guancai Xie, Beidou Guo, Jian Ru Gong. Role of transition-metal electrocatalysts for oxygen evolution with Si-based photoanodes [J]. Chinese Journal of Catalysis, 2021, 42(8): 1387-1394. |
[3] | Xue-Peng Yin, Shu-Wen Luo, Shang-Feng Tang, Xiu-Li Lu, Tong-Bu Lu. In situ synthesis of a nickel boron oxide/graphdiyne hybrid for enhanced photo/electrocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2021, 42(8): 1379-1386. |
[4] | Junwei Chen, Zuqiao Ou, Haixin Chen, Shuqin Song, Kun Wang, Yi Wang. Recent developments of nanocarbon based supports for PEMFCs electrocatalysts [J]. Chinese Journal of Catalysis, 2021, 42(8): 1297-1326. |
[5] | Ting Wang, Shaoxiong Li, Bingling He, Xiaojuan Zhu, Yonglan Luo, Qian Liu, Tingshuai Li, Siyu Lu, Chen Ye, Abdullah M. Asiri, Xuping Sun. Commercial indium-tin oxide glass: A catalyst electrode for efficient N2 reduction at ambient conditions [J]. Chinese Journal of Catalysis, 2021, 42(6): 1024-1029. |
[6] | Qiang Hu, Hua Wang, Feifei Xiang, Qiaoji Zheng, Xinguo Ma, Yu Huo, Fengyu Xie, Chenggang Xu, Dunmin Lin, Jisong Hu. Critical roles of molybdate anions in enhancing capacitive and oxygen evolution behaviors of LDH@PANI nanohybrids [J]. Chinese Journal of Catalysis, 2021, 42(6): 980-993. |
[7] | Yang Qiu, Xiaohong Xie, Wenzhen Li, Yuyan Shao. Electrocatalysts development for hydrogen oxidation reaction in alkaline media: From mechanism understanding to materials design [J]. Chinese Journal of Catalysis, 2021, 42(12): 2094-2104. |
[8] | Xiangyong Zhang, Tianying Liu, Ting Guo, Xueying Han, Zongyun Mu, Qiang Chen, Jiangmin Jiang, Jing Yan, Jiaren Yuan, Dezhi Wang, Zhuangzhi Wu, Zongkui Kou. Controlling atomic phosphorous-mounting surfaces of ultrafine W2C nanoislands monodispersed on the carbon frameworks for enhanced hydrogen evolution [J]. Chinese Journal of Catalysis, 2021, 42(10): 1798-1807. |
[9] | Shuaiqiang Jia, Qinggong Zhu, Haihong Wu, Meng'en Chu, Shitao Han, Ruting Feng, Jinghui Tu, Jianxin Zhai, Buxing Han. Efficient electrocatalytic reduction of carbon dioxide to ethylene on copper–antimony bimetallic alloy catalyst [J]. Chinese Journal of Catalysis, 2020, 41(7): 1091-1098. |
[10] | Marine Trégaro, Maha Rhandi, Florence Druart, Jonathan Deseure, Marian Chatenet. Electrochemical hydrogen compression and purification versus competing technologies: Part II. Challenges in electrocatalysis [J]. Chinese Journal of Catalysis, 2020, 41(5): 770-782. |
[11] | Jing Zhang, Qiu-an Huang, Juan Wang, Jing Wang, Jiujun Zhang, Yufeng Zhao. Supported dual-atom catalysts: Preparation, characterization, and potential applications [J]. Chinese Journal of Catalysis, 2020, 41(5): 783-798. |
[12] | Hellen Gabriela Rivera Monestel, Ibrahim Saana Amiinu, Andrés Alvarado González, Zonghua Pu, BibiMaryam Mousavi, Shichun Mu. Robust MOF-253-derived N-doped carbon confinement of Pt single nanocrystal electrocatalysts for oxygen evolution reaction [J]. Chinese Journal of Catalysis, 2020, 41(5): 839-846. |
[13] | Kai Chen, Suqin Ci, Qiuhua Xu, Pingwei Cai, Meizhen Li, Lijuan Xiang, Xi Hu, Zhenhai Wen. Iron-incorporated nitrogen-doped carbon materials as oxygen reduction electrocatalysts for zinc-air batteries [J]. Chinese Journal of Catalysis, 2020, 41(5): 858-867. |
[14] | Fang Shi, Xuefeng Zhu, Weishen Yang. Micro-nanostructural designs of bifunctional electrocatalysts for metal-air batteries [J]. Chinese Journal of Catalysis, 2020, 41(3): 390-403. |
[15] | Weiqiang Feng, Hui Chen, Qi Zhang, Ruiqin Gao, Xiaoxin Zou. Lanthanide-regulated oxygen evolution activity of face-sharing IrO6 dimers in 6H-perovskite electrocatalysts [J]. Chinese Journal of Catalysis, 2020, 41(11): 1692-1697. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||