催化学报 ›› 2025, Vol. 78: 265-278.DOI: 10.1016/S1872-2067(25)64808-X

• 论文 • 上一篇    下一篇

铋氧双空位的超薄钒酸铋的构建及其光催化氮气还原

陈家辉a, 孟跃b, 谢波a, 倪哲明a, 夏盛杰a,*()   

  1. a浙江工业大学化学工程学院化学系, 浙江杭州 310014
    b湖州学院生命与健康科学学院制药工程系, 浙江湖州 313000
  • 收稿日期:2025-05-20 接受日期:2025-07-22 出版日期:2025-11-18 发布日期:2025-10-14
  • 通讯作者: *电子信箱: xiasj@zjut.edu.cn (夏盛杰).
  • 基金资助:
    国家自然科学基金(22278371);国家自然科学基金(92061126);国家自然科学基金(22478349)

Construction of ultrathin BiVO4 nanosheets with bismuth-oxygen dual vacancies for photocatalytic nitrogen reduction

Jiahui Chena, Yue Mengb, Bo Xiea, Zheming Nia, Shengjie Xiaa,*()   

  1. aDepartment of Chemistry, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
    bDepartment of Pharmaceutical Engineering, School of Life and Health Sciences, Huzhou College, Huzhou 313000, Zhejiang, China
  • Received:2025-05-20 Accepted:2025-07-22 Online:2025-11-18 Published:2025-10-14
  • Contact: *E-mail: xiasj@zjut.edu.cn (S. J. Xia).
  • Supported by:
    National Natural Science Foundation of China(22278371);National Natural Science Foundation of China(92061126);National Natural Science Foundation of China(22478349)

摘要:

氨(NH3)作为一种重要的化学品和潜在的清洁能源载体, 广泛应用于制药、能源和纺织等领域. 传统合成方法存在能耗高、碳排放高等问题. 光催化固氮技术以其绿色、可持续等特点受到广泛关注, 但面临光生载流子复合率高、反应活性位点不足等挑战, 这在很大程度上限制了光催化固氮的效率. 本研究制备了具有双空位的超薄钒酸铋光催化剂, 通过形貌调控和空位工程有效地解决了上述问题. 超薄结构不仅能富集光生电子, 而且可以增加活性位点与N2/H2O的接触; 同时, 空位工程可以增强催化剂对N2/H2O的吸附和活化能力, 二者共同作用, 促进了NH3的生成. 因此, 利用双空位和超薄结构的协同作用以实现高效的氨产率是本文的主要研究思路.

本文通过溶剂热法和离子共晶溶剂法协同处理构筑了含铋和氧双空位的超薄钒酸铋纳米片(2D-VBi+O-BVO), 并将其用于光催化氮气还原反应. 扫描电子显微镜、透射电子显微镜(TEM)和原子力显微镜的表征结果表明, BiVO4的厚度经两步法改性后显著降低, 从初始的1200 nm锐减至15 nm, 实现了材料的超薄化. 超薄结构不仅增加了活性位点的接触, 而且缩短了光生载流子的迁移距离. 此外, 光沉积实验结果表明, (040)是电子的活性晶面. 超薄结构还可以最大化地暴露该晶面, 有利于高效富集光生电子. 结合TEM、X射线光电子能谱和电子顺磁共振表征, 证实了BiVO4中氧空位和铋空位的成功构建. 密度泛函理论计算结果表明, 氧空位和铋空位可以分别吸附并活化N2和H2O分子, 从而有效促进光催化氮气还原反应的进行. X射线光电子能价带谱和紫外光电子能谱等表征结果显示, 双空位和超薄结构协同调整了BiVO4的能带结构, 使其具有更强的还原能力. 光电流响应、电化学阻抗谱、光致发光光谱和时间分辨光致发光光谱的表征结果表明, 双空位和超薄结构协同增强了BiVO4的光生载流子寿命, 提高了光生载流子的分离速率, 从而提高BiVO4的光催化能力. 此外, 原位红外光谱的表征结果表明, N2可以在BiVO4上被有效吸附并活化. NH2-NH2活性物种的存在证明其通过交替结合路径进行反应. 得益于双空位和超薄结构的协同作用, 2D-VBi+O-BVO在模拟太阳光照射下表现出最优的光催化固氮性能: 氨产率高达158.73 μmol·g-1·h-1, 是bulk-BMO的4.7倍. 循环实验和反应后的一系列表征结果显示, 2D-VBi+O-BVO具有优异的稳定性.

综上, 双空位和超薄结构的的协同构建有效提高了BiVO4的光催化固氮性能. 本研究为通过协同双空位和超薄结构的高效固氮催化剂合成提供新的见解和视角. 在此基础上, 未来的研究可以专注于异质结构或掺杂策略的修饰, 以扩展该领域研究的深度和广度.

关键词: 氧空位, 铋空位, 超薄结构, 光催化, 氮气还原

Abstract:

The efficient utilization of photogenerated electrons and the effective activation of reactive molecules are among the major challenges in photocatalytic nitrogen reduction. Defect engineering can enhance the catalyst's ability to adsorb and activate N2 and H2O, while the ultrathin structure with maximized active crystal facets can maximize the enrichment of effective photogenerated electrons. This work employs a two-step synergistic method to fabricate ultrathin BiVO4 with oxygen vacancies and bismuth vacancies (2D-VBi+O-BVO, thickness < 20 nm) for photocatalytic nitrogen reduction. Scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy characterization confirm the transformation of BiVO4 from bulk material (bulk-BVO, ~1300 nm) to an ultrathin structure (~15 nm). TEM, X-ray photoelectron spectroscopy, electron paramagnetic resonance characterizations, and density functional theory (DFT) calculations verify the construction of oxygen and bismuth vacancies in the ultrathin BiVO4. Compared to bulk-BVO, the photocatalytic nitrogen fixation efficiency of 2D-VBi+O-BVO is increased by 4.7 times, with the highest activity reaching 158.73 μmol·g-1·h-1. N2-temperature programmed desorption and DFT calculations demonstrate that the oxygen and bismuth vacancies in BiVO4, respectively, promote the adsorption/activation of N2 and H2O, which is crucial for the overall nitrogen reduction reaction. Photo-deposition experiments prove that the (040) plane is the active surface for electrons. And the ultrathin structure maximizes the (040) facet of BiVO4, which is conducive to the high enrichment of electrons. Meanwhile, more active sites can be exposed for the activation of N2 and H2O. In situ infrared spectroscopy confirms that N2 can be effectively adsorbed onto 2D-VBi+O-BVO, and the presence of NH2-NH2 active species is consistent with the alternating reaction pathway. This study provides new insights into the development of green and efficient photocatalysts with dual vacancies and ultrathin structures.

Key words: Oxygen vacancies, Bismuth vacancies, Ultrathin structures, Photocatalysis, Nitrogen reduction