催化学报 ›› 2025, Vol. 70: 285-298.DOI: 10.1016/S1872-2067(24)60221-4

• 论文 • 上一篇    下一篇

相邻Ni位点近邻电子效应增强Cu位点加氢和脱氧匹配度促进硝酸盐电还原产氨

成雪峰a,b, 刘青a, 孙启孟a, 董慧龙d, 陈冬赟a, 郑莹c, 徐庆锋a,*(), 路建美a,*()   

  1. a苏州大学材料与化学化工学部, 江苏苏州215123, 中国
    b淮阴师范学院化学化工学院, 江苏淮安 223300, 中国
    c西安大略大学化学与生化工程系, 西安大略伦敦, 加拿大
    d常熟理工学院材料工程学院, 江苏常熟 215500, 中国
  • 收稿日期:2024-10-10 接受日期:2024-12-23 出版日期:2025-03-18 发布日期:2025-03-20
  • 通讯作者: * 电子信箱: xuqingfeng@suda.edu.cn (徐庆锋),lujm@suda.edu.cn (路建美).
  • 基金资助:
    国家自然科学基金(21938006);国家自然科学基金(21776190);国家自然科学基金(51773144);江苏省基础研究计划重点项目(BK20202012);中国博士后科学基金会面上项目(2020M681714);江苏省高等学校优势学科建设工程资助项目(PAPD);科技部智能纳米环保新材料与检测技术国际联合研究中心项目(SDGH2303)

Proximity electronic effect of adjacent Ni Site enhances compatibility of hydrogenation and deoxygenation over Cu Site to boost nitrate electroreduction to ammonia

Xue-Feng Chenga,b, Qing Liua, Qi-Meng Suna, Huilong Dongd, Dong-Yun Chena, Ying Zhengc, Qing-Feng Xua,*(), Jian-Mei Lua,*()   

  1. aCollege of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
    bSchool of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, Jiangsu, China
    cDepartment of Chemical and Biochemical Engineering, Western University, London N6A37K, Ontario, Canada
    dSchool of Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
  • Received:2024-10-10 Accepted:2024-12-23 Online:2025-03-18 Published:2025-03-20
  • Contact: * E-mail: xuqingfeng@suda.edu.cn (Q.-F. Xu),lujm@suda.edu.cn (J.-M. Lu).
  • Supported by:
    National Natural Science Foundation of China(21938006);National Natural Science Foundation of China(21776190);National Natural Science Foundation of China(51773144);Basic Research Project of Leading Technology in Jiangsu Province(BK20202012);China Postdoctoral Science Foundation(2020M681714);Priority Academic Program Development of Higher Education Institutions in Jiangsu(PAPD);Project of National Center for International Research on Intelligent Nano-Materials and Detection Technology in Environmental Protection, Soochow University(SDGH2303)

摘要:

电催化硝酸盐还原产氨(NITRR)可以同时实现硝酸盐的去除和高附加值氨的合成, 有望替代Haber-Bosch工艺, 实现低二氧化碳排放制氨的新工艺. NITRR的过程可分为脱氧和加氢两个过程, 其中脱氧进程速率较快, 而加氢进程由于存在较高的能垒导致效率较低. 从而造成脱氧与加氢过程速率不匹配的问题, 进而导致硝酸盐还原产氨的效率较低. 因此, 通过催化剂结构的合理设计, 加快加氢反应进程, 提升脱氧与加氢进程的匹配程度, 是实现NITRR整体效率提升的有效方法.

本文通过调整铜盐的投料比, 使用水热法合成了七种不同的一维金属配位聚合物链材料(1D CCPs). 其中, Ni1Cu1-BTA材料展现出最佳的硝酸盐还原产氨性能, 在-0.8 V电压下实现了高达190.4 mg h-1 mgcat-1的产氨效率和高达97.16%的法拉第效率, 优于大多数最近报道的NITRR催化剂. 在1200 h的长期测试过程中, Ni1Cu1-BTA始终保持稳定的催化性能, 并实现了克级氯化铵的回收. 密度泛函理论计算表明, 近邻电子效应诱导的*NO中间体在Ni和Cu位点上的预吸附可以有效降低*NO → *NHO在邻近Cu或Ni位点上的能垒. 尤其是硝酸盐在NiCu-BTA中Cu位点上转化成氨的决速步骤能垒降低到0.01 eV, 极大地促进了NITRR的进程. 同时, 双位点1D CCPs中的Ni位点有利于产生活性氢, 提供丰富的质子源以促进加氢过程, 从而有效提高催化转化效率. 此外, 组装的Zn-NO3电池实现了最高5.9 mW cm-2的功率密度, 在16 mA cm-2的电流密度下放电时, 氨产率为1.61 mg h-1·cm-2, 法拉第效率为95.36%.

综上所述, 近邻电子效应可以有效提升脱氧和加氢过程的速率匹配程度, 从而提升NITRR的整体效率. 本工作为NITRR过程背后的机制提供了新的见解, 并将进一步激发对双位点催化剂在多步骤电催化反应中的研究兴趣.

关键词: 电催化, 合成氨, 硝酸盐还原, 近邻电子效应, 双位点

Abstract:

Electrocatalytic conversion of nitrate to ammonia (NITRR) can simultaneously achieve the removal of nitrate and the synthesis of value-added ammonia, a promising candidate to replace Haber-Bosch process with low carbon dioxide emissions. However, high hydrogenation energy barrier for *NO intermediates and insufficient supply of active hydrogen cause slow hydrogenation process, and further result in low efficiency of nitrate conversion and ammonia synthesis. Herein, a series of tandem catalysts, one-dimensional coordination polymers (1D CCPs) with dual sites are synthesized and obtained 190.4 mg h-1 mgcat-1 ammonia production rate with Faradaic efficiency of 97.16%, outperforming to the most of recent reported catalysts. The catalytic performances are well-maintained even after a long-term stability test of 1200 h, laying the foundation for practical applications. Density functional theory results reveal that the stationary adsorbed *NO on Ni site induced proximity electronic effect could reduce the energy barrier for hydrogenation of *NO intermediates over Cu site. In addition, the Ni site in the dual sites 1D CCPs is conducive to generating active hydrogen, providing rich proton source to boost the hydrogenation of *NO, and further enhancing the compatibility of deoxygenation and hydrogenation process. Our work paves a new insight into the mechanism of NITRR process and will inspire more research interests in exploring the proximity electronic effect in catalytic process.

Key words: Electrocatalysis, Ammonia synthesis, Nitrate reduction, Proximity electronic effect, Dual sites