催化学报 ›› 2025, Vol. 79: 91-99.DOI: 10.1016/S1872-2067(25)64852-2

• 论文 • 上一篇    下一篇

氢掺杂PdRu电催化剂用于碱性电解水制氢

吴昊a,1, 江娴a,1, 逯景宇a, 李以博a, 李欣妍a, 鞠贵东b, 李仁贵c,*(), 张静a,*()   

  1. a南京理工大学新能源学院, 江苏江阴214000
    b双良节能系统股份有限公司, 江苏江阴214000
    c中国科学院大连化学物理研究所, 大连洁净能源国家实验室, 催化基础国家重点实验室, 辽宁大连116023
  • 收稿日期:2025-08-27 接受日期:2025-09-15 出版日期:2025-12-18 发布日期:2025-10-27
  • 通讯作者: 李仁贵,张静
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22172068);国家自然科学基金(22202104);江苏省自然科学基金(BK20221485);江苏省自然科学基金(BK20220933)

H-incorporated PdRu electrocatalyst for water splitting under alkaline condition

Hao Wua,1, Xian Jianga,1, Jingyu Lua, Yibo Lia, Xinyan Lia, Guidong Jub, Rengui Lic,*(), Jing Zhanga,*()   

  1. aSchool of New Energy, Nanjing University of Science and Technology, Jiangyin 214000, Jiangsu, China
    bShuangliang Eco-Energy Systems Co. Ltd, Jiangyin 214000, Jiangsu, China
    cState Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2025-08-27 Accepted:2025-09-15 Online:2025-12-18 Published:2025-10-27
  • Contact: Rengui Li, Jing Zhang
  • About author:1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22172068);National Natural Science Foundation of China(22202104);Natural Science Foundation of Jiangsu Province(BK20221485);Natural Science Foundation of Jiangsu Province(BK20220933)

摘要:

氢能凭借高能量密度与零碳排放, 成为实现“双碳”目标的关键清洁能源. 电解水制氢具有绿色可再生的优势, 其中碱性水电解因成本低、运行稳定而备受关注. 然而, 在碱性条件下, 析氢反应(HER)动力学迟缓, 质子浓度极低导致氢中间体吸附与脱附失衡, 严重限制反应速率. 贵金属铂虽在酸性介质中表现出最佳HER活性, 但在碱性环境中活性显著下降, 加之资源稀缺、价格高昂, 限制了其商业化应用. 因此, 开发高效稳定的非铂催化剂具有重要意义. 钯(Pd)和钌(Ru)因氢吸附性能接近铂且储量相对丰富, 被认为是潜在替代金属. 但单一金属存在氢结合过强或水分子解离缓慢等问题. 构建Pd基双金属合金可通过调控能带结构优化中间体吸附, 进而增强电解水性能. 尽管PdRu合金在酸性条件下表现出优异的电解水性能, 但其在碱性环境中的应用研究仍较有限, 尤其缺乏电子结构调控与水分解动力学关系的系统探索.
本文采用水热法合成三维多孔枝晶状氢掺杂PdRu电催化剂(HInc-PdRu), 通过乙醇作为氢供体溶剂实现晶格内原位氢化。多种结构表征结果表明, 氢的引入导致晶格膨胀并生成高密度结构缺陷, XRD衍射峰向低角偏移, EDX定量分析显示原子比H:(Pd + Ru)约为0.47. XPS结果显示HInc-PdRu中的Pd 3d与Ru 3p结合能均较PdRu合金升高, 表明电子转移至氢间隙位, d带中心下移, 从而削弱氢吸附强度. 电化学测试显示, HInc-PdRu在1.0 mol L‒1 KOH溶液中于10 mA cm‒2下仅需25 mV过电位, 优于Pd, Ru, PdRu及商业Pt/C, Tafel斜率为72.14 mV dec‒1, 法拉第效率接近100%. 催化剂在连续运行24 h后活性衰减不足0.5%, 经加速耐久测试后仍保持结构与性能稳定. 在两电极碱性电解槽中, 以HInc-PdRu为阴极、RuO2为阳极, 仅需1.37 V即可驱动10 mA·cm‒2电流, 展现出优异的整体电解水性能. 机理研究表明, 氢的掺入显著促进了界面H2O*/OH*物种的迁移性与可及性, 加速了Volmer步水分子解离. DFT计算进一步证实, 氢与Ru的协同作用通过s-d轨道耦合, 优化Pd电子结构, 使HInc-PdRu的d带中心下移并增强反键态占据, 使水分解能垒降低至‒0.11 eV, H*吸附能接近热力学最优值(‒0.04 eV), 从而显著改善HER动力学. 氢的引入在结构、电子及界面层面实现多重调控, 赋予催化剂优异的活性与稳定性.
综上所述, 本研究提出的氢掺杂PdRu电催化剂通过调控晶格结构和电子态, 实现了对碱性析氢反应关键步骤的优化, 在活性、稳定性和能效方面均表现出优异性能. 该工作为设计开发新型高效耐久的碱性HER电催化剂提供了新的思路和方法.

关键词: 氢掺杂, 钯钌, 析氢反应, 电催化, 碱性电解水

Abstract:

The hydrogen evolution reaction (HER) in alkaline water electrolysis faces significant kinetic and thermodynamic challenges that hinder its efficiency and scalability for sustainable hydrogen production. Herein, we employed an in-situ synthesis strategy to incorporate H atoms into the PdRu alloy lattice to form HInc-PdRu electrocatalyst, thereby modulating its electronic structure and enhancing its alkaline HER performance. We demonstrate that the incorporation of H atoms significantly improves electrocatalytic activity, achieving a remarkably low overpotential of 25 mV at 10 mA cm‒2 compared with the Pd, Ru and PdRu catalysts while maintaining robust catalyst stability. Operando spectroscopic analysis indicates that H insertion into the HInc-PdRu electrocatalyst enhances the availability of H2O* at the surface, promoting water dissociation at the active sites. Theoretical calculations proposed that the co-incorporating H and Ru atoms induces s-d orbital coupling within the Pd lattices, effectively weakening hydrogen adsorption strength and optimizing the alkaline HER energetics. This work presents a facile approach for the rational design of bimetallic electrocatalysts for efficient and stable alkaline water electrolysis for renewable hydrogen production.

Key words: H-incorporated, PdRu, Hydrogen evolution reaction, Electrocatalyst, Alkaline water electrolysis