催化学报 ›› 2026, Vol. 80: 189-199.DOI: 10.1016/S1872-2067(25)64854-6

• 论文 • 上一篇    下一篇

AgPd-Co3O4级联活性位点调节•OH生成促进光催化甲烷制甲醇

梁舒淇a,1, 肖针a,1, 沈锦妮a, 戴文新a,b, 张子重a,*()   

  1. a福州大学化学学院, 核生化灾害防护化学全国重点实验室, 福建福州 350116
    b清源创新实验室, 福建泉州 362801
  • 收稿日期:2025-07-12 接受日期:2025-09-05 出版日期:2026-01-18 发布日期:2026-01-05
  • 通讯作者: 张子重
  • 作者简介:第一联系人:1共同第一作者

Tuning radical generation rate for efficient CH4 photooxidation to CH3OH over AgPd alloy and Co3O4 cascade active sites

Shuqi Lianga,1, Zhen Xiaoa,1, Jinni Shena, Wenxin Daia,b, Zizhong Zhanga,*()   

  1. aState Key Laboratory of Chemistry for NBC Hazards Protection, Fuzhou University, Fuzhou 350116, Fujian, China
    bQingyuan Innovation Laboratory, Quanzhou 362801, Fujian, China
  • Received:2025-07-12 Accepted:2025-09-05 Online:2026-01-18 Published:2026-01-05
  • Contact: Zizhong Zhang
  • About author:First author contact:1These authors contributed equally.

摘要:

甲烷(CH4)在地球上的储量丰富, 在温和条件下将其直接转化为甲醇(CH3OH)是一种极具吸引力的高值转化路线. TiO2基催化剂以其优秀的C−H活化性能而被广泛用于甲烷光催化选择性转化. 然而, 在TiO2表面容易产生的羟基自由基(•OH)会引起持续的氧化过程, 导致CH4转化为HCHO和CO2等产物. 此外, TiO2晶格氧对反应中间体的强吸附能力, 也会诱导过氧化产物的形成. 因此, 要实现CH3OH的高选择性生成, 需要同时抑制过量•OH的释放并缓解晶格氧的强吸附效应. 构建级联活性位点是调控自由基的生成和消除晶格氧不良影响的有效策略. 金属合金有助于调控O2选择性转化为•OH, 而氧化物可以通过价态变化来改变电子结构, 从而调控载体表面•OH的释放速率和•CH3与晶格氧的强相互作用. 因此, 利用这两种活性位点的协同效应可以精确调节TiO2表面•OH生成的动力学, 进而提高CH3OH选择性.

本文通过浸渍煅烧法与化学还原法成功制备了具有AgPd合金和Co3O4级联活性位点的TiO2光催化剂. 透射电镜和X射线光电子能谱(XPS)结果证明了AgPd合金与Co3O4的成功修饰与电子结构的变化. 通过原位XPS表征了电子转移过程, 证明了AgPd合金为富电子位点, Co3O4为空穴捕获中心. 原位电子顺磁共振、气相色谱质谱联用-同位素标记实验、香豆素荧光探针实验以及自由基捕获实验证明了O2是产生•OH和含氧液态化合物的主要氧源, 并且•OH的空间分布限制在AgPd合金活性位点处. 通过原位傅里叶变化红外光谱证明了Co3O4作为空穴缓冲与储存中心, 可以有效地减少HCHO和CO2的生成. AgPd合金和Co3O4级联活性位点有效促进•CH3和•OH的定向结合生成CH3OH. 优化后的AgPd-Co/TiO2催化剂表现出优异的CH4光催化转化为CH3OH的性能 (4434.9 μmol·g−1), CH3OH在液态含氧化合物中的选择性高达93%, 显著优于大部分已报道的TiO2基光催化剂.

综上, 该研究表明调控自由基生成速率的策略在提高CH4氧化产物选择性方面展现出充分的应用潜力, 为实现温和条件下的甲烷资源升级利用提供有价值的参考. 后续可以借助多维原位表征和理论预测等方式深入研究CH4光催化转化机制, 并进一步将策略拓展至导向生成HCHO甚至多碳产物等高值化学品.

关键词: 甲烷转化, AgPd合金, Co3O4, TiO2, 光催化

Abstract:

The direct conversion of methane into methanol under mild conditions represents a highly appealing pathway. Regulating the generation of hydroxyl radicals (•OH) is a representative method, but excessive release of •OH will inevitably lead to the over-oxidation of CH3OH. Here, we design AgPd alloy and Co3O4 cascade active sites on the TiO2 surface (AgPd-Co/TiO2) to control the release rate of •OH to improve the selectivity of CH3OH. By incorporating Co3O4 as a hole buffer and storage center, the kinetics of •OH generation at the TiO2 interface can be effectively modulated. This confines the spatial distribution of •OH to the active sites of the AgPd alloy, thus facilitating the directional combination of •CH3 and •OH. The optimal AgPd-Co/TiO2 photocatalyst demonstrates outstanding catalytic performance with the selectivity of CH3OH reaching up to 93% in the liquid phase. AgPd-Co/TiO2 exhibited significantly enhanced selectivity relative to reported TiO2-based photocatalytic systems, while simultaneously achieving comparable methanol yields. This research offers valuable insights for the precise design of composite photocatalysts to achieve highly selective methane oxidation.

Key words: Methane conversion, AgPd alloy, Co3O4, TiO2, Photocatalysis