催化学报 ›› 2026, Vol. 80: 258-269.DOI: 10.1016/S1872-2067(25)64882-0

• 论文 • 上一篇    下一篇

质子型离子液体调控分子铁催化剂氧还原活性的pH依赖性及其电化学界面起源

门亚娜a,b,1, 矫宇州a,1, 郑妍星a, 王晓晏a, 陈胜利a,*(), 李朋a,c,*()   

  1. a武汉大学化学与分子科学学院, 化学电源材料与技术湖北省重点实验室, 湖北武汉 430072
    b武汉大学苏州研究院, 江苏苏州 215123
    c南开大学先进能源材料化学教育部重点实验室, 天津 300071
  • 收稿日期:2025-06-04 接受日期:2025-06-30 出版日期:2026-01-18 发布日期:2026-01-05
  • 通讯作者: 陈胜利,李朋
  • 作者简介:第一联系人:1共同第一作者
  • 基金资助:
    国家自然科学基金(22202156);国家自然科学基金(22332004);国家自然科学基金(22472122);国家自然科学基金(22302150);湖北省自然科学基金(2024AFB571);湖北省自然科学基金(2023AFB226);江苏省基础研究计划(BK20230264)

pH-dependent protic ionic liquid tuning effect on oxygen reduction activity of a molecular iron catalyst and its electrochemical interfacial origin

Yana Mena,b,1, Yuzhou Jiaoa,1, Yanxing Zhenga, Xiaoyan Wanga, Shengli Chena,*(), Peng Lia,c,*()   

  1. aHubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
    bSuzhou Institute of Wuhan University, Suzhou 215123, Jiangsu, China
    cKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
  • Received:2025-06-04 Accepted:2025-06-30 Online:2026-01-18 Published:2026-01-05
  • Contact: Shengli Chen, Peng Li
  • About author:First author contact:1These authors contributed equally.
  • Supported by:
    National Natural Science Foundation of China(22202156);National Natural Science Foundation of China(22332004);National Natural Science Foundation of China(22472122);National Natural Science Foundation of China(22302150);Hubei Provincial Natural Science Foundation of China(2024AFB571);Hubei Provincial Natural Science Foundation of China(2023AFB226);Basic Research Program of Jiangsu Province(BK20230264)

摘要:

氧还原反应(ORR)涉及多步质子耦合电子转移过程, 是多种电化学能量转换与储存技术(如质子交换膜燃料电池, PEMFC)的核心环节. 然而, ORR反应动力学较为缓慢, 需大量稀有且昂贵的铂作为催化剂, 成为限制PEMFC大规模应用与商业化的主要障碍之一. 非贵金属-氮-碳(M-N-C)类催化剂, 尤其是Fe-N-C材料, 因其低成本和对ORR的优异活性而受到广泛关注. 然而, 该类催化剂在酸性介质中的ORR活性、选择性和稳定性仍不尽人意. 在该方面, 除了对催化剂本体的结构优化外, 质子型离子液体(IL)的引入也已被证实是一种提升催化剂ORR活性与电化学稳定性的有效策略. 然而, 其作用机制仍不明确, 且存在较大争议, 尤其是对电催化界面微环境可能参与调控的作用尚未得到深入研究.

值得一提的是, 具有平面N4配位结构的过渡金属大环配合物(如金属酞菁)因其结构明确, 近年来在多种电催化体系中被广泛用于解析催化反应中的基础科学问题. 鉴于此, 本文以碳载铁酞菁(FePc/C)为模型催化剂, 系统结合电化学实验、从头算分子动力学(AIMD)模拟和原位表面增强红外吸收光谱(SEIRAS)技术, 从界面双电层结构调控的角度出发, 深入揭示了质子型IL修饰引发ORR活性变化的微观机制. 该界面机制的建立不仅受到IL调控下ORR活性演化趋势随pH变化规律的启发, 也得到了进一步的实验证实. 具体而言, 电化学测试表明, IL修饰对FePc/C在酸性电解质中的ORR活性表现出明显的增强效应, 而在碱性条件下ORR活性会略有下降. AIMD模拟与SEIRAS结果共同揭示, IL修饰对ORR活性的调控作用源于其对酸性与碱性界面中截然不同的双电层结构的调节. 在酸性介质中, IL可排出原本以O端朝下有序排列的界面水分子, 破坏其定向排列, 并在体相与表面含氧中间体之间充当分子间的质子传递通道, 从而加速质子耦合电子转移过程并提升ORR活性; 而在碱性介质中, IL的引入反而扰乱了原本已呈现无序状态的界面水结构, 削弱了水分子与含氧中间体之间丰富的氢键网络, 进而导致ORR活性略有下降. 此外, 实验还发现pKa值较低的质子型IL在酸性条件下能够赋予催化剂更高的ORR活性, 进一步支持了所提出的界面调控机制.

综上, 本研究从电化学界面调控的视角出发, 揭示了IL功能修饰对ORR性能的本质影响, 并可为通过界面功能调控开发高效、低成本的质子交换膜燃料电池催化体系提供新思路.

关键词: 氧还原反应, 质子型离子液体修饰, 电催化界面, 质子耦合电子转移, pH依赖性

Abstract:

Protic ionic liquid (IL) modification has been demonstrated to be a promising approach for improving the oxygen reduction reaction (ORR) activity and electrochemical stability of catalysts. However, its fundamental mechanism remains largely elusive and controversial, and the possible roles of electrocatalytic interface microenvironment has been ignored so far. Herein, taking the well-structured iron phthalocyanine (FePc) as a model catalyst, it is found that the ORR activity evolution behavior induced by the protic IL modification exhibits a striking pH-dependence, that is, ORR is promoted in acid while slightly inhibited in alkaline. Integrating the electrokinetic analyses, ab initio molecular dynamics simulation and in situ surface-enhanced infrared absorption spectroscopy, we show that the discrepancy in activity evolution arises from the regulation of IL modification on the vastly dissimilar electrochemical interfacial structures under acid and alkaline ORR conditions. Such mechanistic picture can be further supported by the fact that the protic IL with a lower pKa renders a higher acid ORR activity. This study provides a unique interfacial perspective for understanding the IL modifiers-modulated ORR performance and highlights opportunities for developing cost-effective and high-efficiency proton exchange membrane fuel cells through the functional modulation of electrocatalytic interfaces.

Key words: Oxygen reduction reaction, Protic ionic liquid modification, Electrocatalytic interface, Proton-coupled electron transfer, pH-dependence