催化学报 ›› 2015, Vol. 36 ›› Issue (4): 550-554.DOI: 10.1016/S1872-2067(14)60295-3

• 论文 • 上一篇    下一篇

TiN0.3/CeO2光阳极材料的构筑及其光电催化性能

崔华楠a, 李登a, 刘冠涛a, 梁振兴b, 石建英a   

  1. a 中山大学化学与化学工程学院, 广东广州 510275;
    b 华南理工大学化学与化工学院, 广东广州 510640
  • 收稿日期:2014-11-07 修回日期:2015-01-12 出版日期:2015-03-23 发布日期:2015-03-23
  • 通讯作者: Jianying Shi
  • 基金资助:

    国家自然科学基金(21103235); 广东省自然科学基金(S2012010010775); 广州市科技计划(2013J4100110).

A TiN0.3/CeO2 photo-anode and its photo-electrocatalytic performance

Huanan Cuia, Deng Lia, Guantao Liua, Zhenxing Liangb, Jianying Shia   

  1. a School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China;
    b School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2014-11-07 Revised:2015-01-12 Online:2015-03-23 Published:2015-03-23
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21103235), the Natural Science Foundation of Guangdong Province (S2012010010775), and the Science and Technology Program of Guangzhou (2013J4100110).

摘要:

采用高温氮化法在Ti片基底上生长一层TiN0.3薄膜, 进一步利用电化学沉积法在TiN0.3薄膜上生长CeO2, 制备了TiN0.3/CeO2复合材料. 分别用X射线衍射和扫描电镜研究了复合材料的晶体和形貌结构, 用紫外-可见光谱探究了材料的光学吸收性能. 结果表明, 球状CeO2颗粒均匀地分布在TiN0.3表面; 该复合光阳极除了TiN0.3对可见光的吸收外, 外层的CeO2同时实现了对紫外光的吸收. 光电催化性能研究发现, TiN0.3/CeO2复合光阳极能够显著提高TiN0.3或CeO2的光电流密度, 同时增加光电流的稳定性. TiN0.3/CeO2独特的双层结构是其光电催化性能提高的主要原因. 在TiN0.3与CeO2界面处异质结构的驱动下, CeO2层中的光生电子迁移至TiN0.3层, 而相应的光生空穴在界面处被Ce3+所消耗, 从而提高了CeO2层中电子和空穴的分离效率, 光电流密度也随之提高; 同时, 位于CeO2与电解液界面处的Ce3+作为水分子的吸附中心和反应活性中心, 加快了界面处水的氧化反应, 从而进一步促进了稳定光电流的产生. 鉴于TiN0.3/CeO2光阳极材料优良的光电催化性能, 其在太阳能光电催化领域具有潜在的应用, 对于新型高效光电转化材料的设计与合成具有借鉴作用.

关键词: 氮化钛, 氧化铈, TiN0.3/CeO2, 光阳极, 光电催化

Abstract:

A TiN0.3/CeO2 photo-anode was synthesized by the electro-deposition of CeO2 on TiN0.3 supported on a Ti substrate. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to study its structure and morphology. The crystalline nature of TiN0.3 and CeO2 was confirmed by XRD, and SEM images showed that CeO2 spheres uniformly distributed on the TiN0.3 surface. In addition to visible light absorption by TiN0.3, UV light was also harvested by the outer CeO2 component on the TiN0.3/CeO2 combined photo-anode. In the photo-electrochemical measurement, TiN0.3/CeO2 showed four times higher photo-current density than TiN0.3 or CeO2, and the photo-current stabilization was also significantly improved compared to TiN0.3 or CeO2. The specific double-layer structure of TiN0.3/CeO2 contributed to its improved photo-electrocatalytic performance. Electron transfer from CeO2 to TiN0.3 driven by the hetero-junction and hole consumption by Ce3+ at the TiN0.3/CeO2 interface promoted the separation of electron and hole in the CeO2 layer, which improved the photo-current generation. Ce3+ that existed in CeO2 acted as the adsorption and activation site for H2O and accelerated the oxidation of H2O on the CeO2 surface, which further led to the high and stable photo-current density generated in TiN0.3/CeO2. This finding is useful for the design and synthesis of an effective photo-electrocatalysis material for solar energy conversion.

Key words: Titanium nirtide, Ceria, TiN0.3/CeO2, Photo-anode, Photo-electrocatalysis