催化学报 ›› 2025, Vol. 74: 202-210.DOI: 10.1016/S1872-2067(25)64739-5

• 论文 • 上一篇    下一篇

CO-H2O共电解制CO/O2用于本质安全的乙烯/乙炔氧化双羰基化反应

曹彦伟a,1, 曲芸豪b,d,1, 苏彬c,1, 王功伟b,d,*(), 黄洋a, 罗振敏c,*(), 庄林b,d,*(), 何林a,*()   

  1. a中国科学院兰州化学物理研究所低碳催化与二氧化碳利用全国重点实验室, 甘肃兰州 730000
    b武汉大学高等研究院, 湖北武汉 430072
    c西安科技大学安全科学与工程学院, 陕西西安 710054
    b武汉大学化学与分子科学学院化学电源材料与技术湖北省重点实验室, 湖北武汉 430072
  • 收稿日期:2025-02-17 接受日期:2025-03-17 出版日期:2025-07-18 发布日期:2025-07-20
  • 通讯作者: *电子信箱: wwang@whu.edu.cn (王功伟),zmluo@xust.edu.cn (罗振敏),lzhuang@whu.edu.cn (庄林),helin@licp.cas.cn (何林).
  • 作者简介:1共同第一作者.
  • 基金资助:
    中国科学院战略性先导科技专项(XDC0180202);国家重点研发计划(2022YFA1504602);国家自然科学基金(U22B20137);国家自然科学基金(22302214);国家自然科学基金(22202222);国家自然科学基金(21972152);国家自然科学基金(21991154);国家自然科学基金(52304252);国家自然科学基金(52174200);国家自然科学基金(21991150);国家自然科学基金(22172115);甘肃省科技重大专项(22ZD6GA003);甘肃省科技重大专项(23ZDFA016);甘肃省基础创新群体(24JRRA043);兰州化物所青年科技工作者协同创新联盟合作基金(LHJJ-20240103);小米青年学者

CO2-H2O co-electrolysis to CO/O2 for safe oxidative double carbonylation of ethylene/acetylene

Yanwei Caoa,1, Yunhao Qub,d,1, Bin Suc,1, Gongwei Wangb,d,*(), Yang Huanga, Zhenmin Luoc,*(), Lin Zhuangb,d,*(), Lin Hea,*()   

  1. aState Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    bThe Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, China
    cSchool of Safety Science & Engineering, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
    bCollege of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, Hubei, China
  • Received:2025-02-17 Accepted:2025-03-17 Online:2025-07-18 Published:2025-07-20
  • Contact: *E-mail: wwang@whu.edu.cn (G. Wang), zmluo@xust.edu.cn (Z. Luo), lzhuang@whu.edu.cn (L. Zhuang), helin@licp.cas.cn (L. He).
  • About author:1Contributed equally to this work.
  • Supported by:
    Strategic Priority Research Program of the Chinese Academy of Sciences(XDC0180202);National Key Research and Development Program of Ministry of Science and Technology(2022YFA1504602);National Natural Science Foundation of China(U22B20137);National Natural Science Foundation of China(22302214);National Natural Science Foundation of China(22202222);National Natural Science Foundation of China(21972152);National Natural Science Foundation of China(21991154);National Natural Science Foundation of China(52304252);National Natural Science Foundation of China(52174200);National Natural Science Foundation of China(21991150);National Natural Science Foundation of China(22172115);Major Science and Technology Projects in Gansu Province(22ZD6GA003);Major Science and Technology Projects in Gansu Province(23ZDFA016);Gansu Province Basic Innovation Group(24JRRA043);LICP Cooperation Foundation for Young Scholars(LHJJ-20240103);Xiaomi Young Talents Program

摘要:

将CO2转化为高附加值化学品是实现低碳循环经济以及双碳目标的重要途径. 其中, 利用可再生电能将CO2转化为燃料或者化学品是一条关键的技术路线. 然而, 目前CO2电还原的产物主要集中在C1或C2, 尚未实现多碳产物的高选择性构建, 尤其是单一多碳产物的高选择性制备. 鉴于CO2还原为CO具有较为成熟的技术积累以及羰基化反应可以高选择性构建单一多碳产物, 可以通过将CO2还原与羰基化反应相耦合来实现CO2的高值化利用.

此前已报道的CO2还原与羰基化反应相耦合过程仅实现了CO利用, 尚未实现CO2全利用. 因此, 本文报道了一种CO2全利用策略, 该策略将CO2-H2O共电解生成的CO/O2作为原料, 与乙烯/乙炔的氧化双羰基化合成CO2基C4双酯类化合物, 如丁二酸二甲酯、富马酸二甲酯和马来酸二甲酯等, 这类化合物在可降解聚合物(聚丁二酸二丁酯)、增塑剂、溶剂、表面活性剂、有机合成中间体、药物中间体、药物载体、食品添加剂、香料中间体等多个领域内有着广泛的用途. 而尚未电解的CO2可作为气体抑爆剂, 消除乙烯/乙炔氧化双羰基化反应过程中潜在的爆炸风险. 为了凸显出CO2可作为氧化羰基化反应中的气体抑爆剂, 系统性地研究了在不同浓度的CO2对反应气体(CO/O2, C2H4/CO/O2和C2H2/CO/O2)的抑爆效果. 结果表明, 添加65%的CO2后, 能够完全消除CO/O2混合气体的爆炸风险; 添加60%的CO2后, 能够完全消除C2H4/CO/O2混合气体的爆炸风险; 添加约70%的CO2后, 能够完全消除C2H2/CO/O2混合气体的爆炸风险. 在400 mA/cm2的工业规模电流密度下, CO2-H2O共电解过程表现出优异的CO/O2选择性以及稳定性. CO2-H2O共电解产生的高浓度CO/O2混合气流可直接用于乙烯/乙炔氧化双羰基化反应. 未还原的CO2在反应过程中不仅不会影响乙烯/乙炔氧化双羰基化反应的活性或者选择性(CO2基C4双酯类化合物的选择性>98%), 而且还能够使得反应在爆炸极限之外进行, 体现出该串联过程优异的兼容性和安全性. 底物适用性扩展和克级放大实验进一步验证了该策略潜在的应用价值.

综上, 本文不仅为氧化羰基化反应构建了一个本质安全的方案, 还为CO2可持续利用开辟了一条新途径, 包括CO替代品和化学抑爆剂. 除此之外, 本文可为其他具有潜在爆炸风险的催化反应过程提供新的研究思路.

关键词: 二氧化碳, 电解, 抑爆剂, 双羰基化, 爆炸极限, 乙烯, 乙炔

Abstract:

Upgrading carbon dioxide (CO2) into value-added bulk chemicals offers a dual-benefit strategy for the carbon neutrality and circular carbon economy. Herein, we develop an integrated CO2 valorization strategy that synergizes CO2-H2O co-electrolysis (producing CO/O2 feeds) with oxidative double carbonylation of ethylene/acetylene to synthesize CO2-derived C4 diesters (dimethyl succinate, fumarate, and maleate). A group of versatile building blocks for manufacturing plasticizers, biodegradable polymers, and pharmaceutical intermediates. Remarkably, CO2 exhibits dual functionality: serving simultaneously as a CO/O2 source and an explosion suppressant during the oxidative carbonylation process. We systematically investigated the explosion-suppressing efficacy of CO2 in flammable gas mixtures (CO/O2, C2H4/CO/O2, and C2H2/CO/O2) across varying concentrations. Notably, the mixed gas stream from CO2/H2O co-electrolysis at an industrial-scale current densities of 400 mA/cm2, enabling direct utilization in oxidative double carbonylation reactions with exceptional compatibility and inherent safety. Extended applications were demonstrated through substrate scope expansion and gram-scale synthesis. This study establishes not only a safe protocol for oxidative carbonylation processes, but also opens an innovative pathway for sustainable CO2 valorization, including CO surrogate and explosion suppressant.

Key words: Carbon dioxide, Electrolysis, Explosion suppressant, Double Carbonylation, Explosion limits, Ethylene, Acetylene